Human Fat Contains Multilineage Differentiating Stress Enduring Cells With Great Potential for Regenerative Medicine


A collaboration between American and Japanese scientists has discovered and characterized a new stem cell population from human fat that do not cause tumors and can differentiate into derivatives from ectoderm, mesoderm, and endoderm.

Multilineage Differentiating Stress-Enduring or Muse cells are found in bone marrow and the lower layers of the skin (dermis). Muse cells are a subpopulation of mesenchymal stem cells, and even express a few mesenchymal stem cell-specific genes (e.g., CD105, a cell-surface protein specific to mesenchymal stem cells). However, Muse cells also express cell surface proteins normally found in embryonic stem cells (e.g., stage-specific embryonic antigen-3, SSEA-3). Additionally, Muse cells have the ability to self-renew, and differentiate into cell types from all three embryonic germ layers, ectoderm (which forms skin and brain), mesoderm, (which forms muscle, bone, kidneys, gonads, heart, blood vessels, adrenal glands, and connective tissue), and endoderm (which forms the gastrointestinal tract and its associated tissues). Finally, Muse cells can home to damaged sites and spontaneously differentiate into tissue-specific cells as dictated by the microenvironment in which the cells find themselves.

A new publication by Fumitaka Ogura and others from Tohoku University Graduate School of Medicine in Sendai, Japan and Saleh Heneidi from the Medical College of Georgia (Augusta, Georgia), and Gregorio Chazenbalk from the David Geffen School of Medicine at UCLA has shown that Muse cells also exist in human fat.

The source of cells came from two places: commercially available fat tissue and freshly collected fat from human subjects, collected by means of liposuction. After growing these cells in culture, the mesenchymal stem cells and Muse cells grew steadily over the 3 weeks. Then the Dezawa research group used fluorescence-activated cell sorting (FACS) to isolate from all these cells those cells that express SSEA-3 on their cell surfaces.

FACS uses antibodies conjugated to dyes that can bind to specific cell proteins. Once the antibodies bind to cells, the cells are sluiced through a small orifice while they are illuminated by the laser. The laser activates the dyes if the cell fluoresces, one door opens and the other closes. The cell goes to one test tube. If the cell does not fluoresce, then the door stay shut and another door opens and the cell goes into a different test tube.  In this way, cells with a particular cell-surface protein are isolated from other cells that do not have that cell-surface protein.

Fluorescent-Activated Cell Sorting
Fluorescent-Activated Cell Sorting

In addition to expression SSEA-3, the fat-based Muse cells expressed other mesenchymal stem cell-specific cell-surface proteins (CD29, CD90), but they did not express proteins usually thought to be diagnostic for fat-based mesenchymal stem cells (MSCs) such as CD34 and CD146.  Muse cells also expressed pluripotency genes (Nanog, Oct3/4, PAR4, Sox2, and Tra-1-81).  The Muse cells grew in small clusters and some cell expressed ectodermal-specific genes (neurofilament, MAP2), others expressed mesodermal-specific genes (smooth muscle actin, NKX2) and endodermal-specific genes (alpha-fetoprotein, GATA6).  These data suggested that the cultured Muse cells were poised to form either ectoderm, mesodermal, or endodermal derivatives.

When transplanted into mice with non-functional immune systems, the Muse cells never formed any tumors or disrupted the normal structure of the nearly tissues.  When placed in differentiating media, fat-derived Muse cells differentiated into cells with neuron-like morphology that expressed neuron-specific genes (Tuj-1), liver cells, and fat.  When compared with Muse cells from bone marrow or skin, the fat-derived Muse cells were better at making bone, fat, and muscle, but not as good as bone marrow Muse cells at making neuronal cell types, but not as good at making glial cells.  Many of these assays were based on gene expression experiments and not more rigorous tests.  Therefore, the results of these experiments might be doubtful until they are corroborated by more rigorous experiments.

These cells are expandable and apparently rather safe to use.  More work needs to be done in order to fully understand the full regenerative capacity of these cells and protocols for handling them must also be developed.  However, hopefully pre-clinical experiments in rodents will give way to larger animal experiments.  If these are successful, then maybe human trials come next.  Here’s to hoping.

Forming Induced Pluripotent Stem Cells Inside a Living Organism


A team from the Spanish National Cancer Research Centre (CNIO) has become the first research team to convert adult cells that are still within a living organism into cells that show characteristics of embryonic stem cells.

The CNIO researchers also say that these embryonic stem cells, which were obtained directly from inside an organism, have a broader capacity for differentiation than those obtained by means of an in vitro culture system. Specifically, they have the characteristics of totipotent cells, a primitive state never before obtained in a laboratory, according to the CNIO team.

Manuel Serrano, Ph.D., director of CNIO’s Molecular Oncology Program and head of the Tumor Suppression Laboratory, led this study. It was supported by Manuel Manzanares, Ph.D., and his team from the Spanish National Cardiovascular Research Centre.

The CNIO researchers say their work extends that of Nobel Prize winner Shinya Yamanaka, M.D., Ph.D., one step forward. Yamanaka opened a new horizon in regenerative medicine when, in 2006, he demonstrated that stem cells could be created from adult cells by using a cocktail of genes. But while Yamanaka induced his cells in culture in the lab (in vitro), the CNIO team created theirs directly in mice (in vivo). Generating these cells within an organism brings this technology even closer to regenerative medicine, they say.

In a study published online Sept. 11 in the journal Nature, the CNIO research team details how it used genetic manipulation techniques to create mice in which Dr. Yamanaka’s four genes could be activated at will. When these genes were activated, they observed that the adult cells were able to de-differentiate into embryonic stem cells in multiple tissues and organs.

María Abad, Ph.D., lead author of the article and a researcher in Dr. Serrano’s group, said, “This change of direction in development has never been observed in nature. We have demonstrated that we can also obtain embryonic stem cells in adult organisms and not only in the laboratory.”

Dr. Serrano added, “We can now start to think about methods for inducing regeneration locally and in a transitory manner for a particular damaged tissue.” Stem cells obtained in mice also show totipotent characteristics never generated in a laboratory. Totipotent cells can form all the cell types in a body, including the placental cells. Embryonic cells within the first couple of cell divisions after fertilization are the only cells that are totipotent.

The researchers reported that they were also able to induce the formation of pseudo-embryonic structures in the thoracic and abdominal cavities of the mice. These pseudo-embryos displayed the three layers typical of embryos (ectoderm, mesoderm, and endoderm), and extra-embryonic structures such as the vitelline membrane, which surrounds the egg, and even signs of blood cell formation, which first appears in the primary embryonic vesicle (otherwise known as the “yolk sac”).

“This data tell us that our stem cells are much more versatile than Dr. Yamanaka’s in vitro inducted pluripotent stem cells, whose potency generates the different layers of the embryo but never tissues that sustain the development of a new embryo, like the placenta,” the CNIO researcher said.  Below is a figure from their paper.  The pictures look pretty convincing.

a, Cysts in the abdominal cavity of a reprogrammable mouse. b, Frequency of embryo-like structures after intraperitoneal injection of in vivo iPS cells (3 clones), in vitro iPS cells (2 clones) and ES cells (JM8.F6). Fisher’s exact test: *P < 0.05. c, Cyst generated by intraperitoneal injection. Left panels, germ layer markers: SOX2 (ectoderm), T/BRACHYURY (mesoderm) and GATA4 (endoderm). Right panels, extraembryonic markers: CDX2 (trophectoderm), and AFP and CK8, both specific for visceral endoderm of the yolk sac. d, Cyst generated by intraperitoneal injection presenting TER-119+ nucleated erythrocytes and LYVE-1+ endothelial cells in structures resembling yolk sac blood islands.
a, Cysts in the abdominal cavity of a reprogrammable mouse. b, Frequency of embryo-like structures after intraperitoneal injection of in vivo iPS cells (3 clones), in vitro iPS cells (2 clones) and ES cells (JM8.F6). Fisher’s exact test: *P < 0.05. c, Cyst generated by intraperitoneal injection. Left panels, germ layer markers: SOX2 (ectoderm), T/BRACHYURY (mesoderm) and GATA4 (endoderm). Right panels, extraembryonic markers: CDX2 (trophectoderm), and AFP and CK8, both specific for visceral endoderm of the yolk sac. d, Cyst generated by intraperitoneal injection presenting TER-119+ nucleated erythrocytes and LYVE-1+ endothelial cells in structures resembling yolk sac blood islands.

The researchers emphasize that any possible therapeutic applications of their work are still distant, but they believe that it could mean a change of direction for stem cell research, regenerative medicine and tissue engineering.

“Our stem cells also survive outside of mice in a culture, so we can also manipulate them in a laboratory,” said Dr. Abad. “The next step is studying if these new stem cells are capable of efficiently generating different tissues such as that of the pancreas, liver or kidney.”

This paper is very interesting, but I find it rather unlikely that their approach will take regenerative medicine by storm.  Engineering mice to express these four genes in an inducible manner caused the formation of unusual tumors throughout the mice.  Maybe they can be coaxed to differentiate into kidney or heart muscle or whatever, but learning how to get them to do that will take a fair amount of in vitro work.  This is interesting, but I doubt that it will change the field overnight.