Human STAP cells – Troubling Possibilities

Soon after the publication of this paper that adult mouse cells could be reprogrammed into embryonic-like stem cells simply by exposing them to acidic environments or other stresses , Charles Vacanti at Harvard Medical School has reported that he and his colleagues have demonstrated that this procedure works with human cells.

STAP cells or stimulus-triggered acquisition of pluripotency cells were derived by Vacanti and his Japanese collaborators last year. These new findings show that adult cells can be reprogrammed into embryonic-like stem cells without genetic engineering. However, this technique worked well in mouse cells, but it was not clear that it would work with human adult cells.

Vacanti and others shocked the world when they published their paper in the journal Nature earlier this year when they announced that adult cells in mice could be reprogrammed through exposure to stresses and proper culture conditions.

Now Vacanti has made good on his promise to test his protocol on human adult cells. In the photo below, provided by Vacanti, human adult cells were reprogrammed to a pluripotent state by exposing them to stresses, followed by growth in culture under specific conditions.

Human STAP cells
Human STAP cells

“If they can do this in human cells, it changes everything, said Robert Lanza of Advanced Cell Technologies in Marlborough, Massachusetts. Such a procedure promises cheaper, faster, and potentially more flexible cells for regenerative medicine, cancer therapy and cell and tissue cloning.

Vacanti and his colleagues say they have taken human fibroblast cells and tested several environmental stressors on them to recreate human STAP cells. He will not presently disclose which particular stressors were applied, he says the resulting cells appear similar in form to the mouse STAP cells. His team is in the process of testing to see just how stem-cell-like these cells are.

According to Vacanti, the human cells took about a week to resemble STAP cells, and formed spherical clusters just like their mouse counterparts. Vacanti and his Harvard colleague Koji Kojima emphasized that these results are only preliminary and further analysis and validation is required.

Bioethical problems potentially emerge with STAP cells despite their obvious potential. The mouse cells that were derived and characterized by Vacanti’s group and his collaborators were capable of making placenta as well as adult cell types. This is different from embryonic stem cells, which can potentially form all adult cell types, but typically do not form placenta. Embryonic stem cells, therefore, are pluripotent, which means that they can form all adult cell types. However, the mouse STAP cells can form all embryonic and adult cell types and are, therefore, totipotent. Mouse STAP cells could form an entirely new mouse. While it is now clear if human STAP cells, if they in fact exist, have this capability, but if they do, they could potentially lead to human cloning.

Sally Cowley, who heads the James Martin Stem Cell Facility at the University of Oxford, said of Vacanti’s present experiments: “Even if these are STAP cells they may not necessarily have the same potential as mouse ones – they may not have the totipotency – which is one of the most interesting features of the mouse cells.”

However the only cells known to be naturally totipotent are in embryos that have only undergone the first couple of cell divisions immediately after fertilization. According to Cowley, any research that utilizes totipotent cells would have to be under very strict regulatory surveillance. “It would actually be ideal if the human cells could be pluripotent and not totipotent – it would make everyone’s life a lot easier,” she opined.

Cowley continued: “However, the whole idea that adult cells are so plastic is incredibly fascinating,” she says. “Using stem cells has been technically incredibly challenging up to now and if this is feasible in human cells it would make working with them cheaper, faster and technically a lot more feasible.”

This is all true, but Robert Lanza from Advanced Cell Technology in Marlborough, Massachusetts, a scientist with whom I have often deeply disagreed, noted: “The word totipotent brings up all kinds of issues,” says Robert Lanza of Advanced Cell Technology in Marlborough, Massachusetts. “If these cells are truly totipotent, and they are reproducible in humans then they can implant in a uterus and have the potential to be turned into a human being. At that point you’re entering into a right-to-life quagmire”

A quagmire indeed, for Vacanti has already talked about using these STAP cells to clone human embryos. Think of it: the creation of very young human beings just for the purpose of ripping them apart and using their cells for research or medicine. Would we allow this if the embryo were older; say the age of a toddler? No we would rightly condemn it as murder, but because the embryo is very young, that somehow counts against it. This is little more than morally grading the embryo according to astrology.

Therefore, whole Vacanti’s experiments are exciting and novel, they hold chilling possibilities. Lanza is right, and it is doubtful that scientists would show the same deference or sensitivities to the moral exigencies he has shown.

Stimulus-Triggered Acquisition of Pluripotency Cells: Embryonic-Like Stem Cells Without Killing Embryos or Genetic Engineering

Embryonic stem cells have been the gold standard for pluripotent stem cells. Pluripotent means capable of differentiating into one of many cell types in the adult body. Ever since James Thomson isolated the first human embryonic stem cell lines in 1998, scientists have dreamed of using embryonic stem cells to treat diseases in human patients.

However, deriving human embryonic stem cell lines requires the destruction or molestation of a human embryo, the smallest, youngest, and most vulnerable member of our community. In 2006, Shinya Yamanaka and his colleges used genetic engineering techniques to make induced pluripotent stem (iPS) cells, which are very similar to embryonic stem cells in many ways. Unfortunately, the derivation of iPSCs introduces mutations into the cells.

Now, researchers from Brigham and Women’s Hospital (BWH), in Boston, in collaboration with the RIKEN Center for Developmental Biology in Japan, have demonstrated that any mature adult cell has the potential to be converted into the equivalent of an embryonic stem cell. Published in the January 30, 2014 issue of the journal Nature, this research team demonstrated in a preclinical model, a novel and unique way to reprogram cells. They called this phenomenon stimulus-triggered acquisition of pluripotency (STAP). Importantly, this process does not require the introduction of new outside DNA, which is required for the reprogramming process that produces iPSCs.

“It may not be necessary to create an embryo to acquire embryonic stem cells. Our research findings demonstrate that creation of an autologous pluripotent stem cell – a stem cell from an individual that has the potential to be used for a therapeutic purpose – without an embryo, is possible. The fate of adult cells can be drastically converted by exposing mature cells to an external stress or injury. This finding has the potential to reduce the need to utilize both embryonic stem cells and DNA-manipulated iPS cells,” said senior author Charles Vacanti, MD, chairman of the Department of Anesthesiology, Perioperative and Pain Medicine and Director of the Laboratory for Tissue Engineering and Regenerative Medicine at BWH and senior author of the study. “This study would not have been possible without the significant international collaboration between BWH and the RIKEN Center,” he added.

The inspiration for this research was an observation in plant cells – the ability of a plant callus, which is made by an injured plant, to grow into a new plant. These relatively dated observations led Vacanti and his collaborators to suggest that any mature adult cell, once differentiated into a specific cell type, could be reprogrammed and de-differentiated through a natural process that does not require inserting genetic material into the cells.

“Could simple injury cause mature, adult cells to turn into stem cells that could in turn develop into any cell type?” hypothesized the Vacanti brothers.

Vacanti and others used cultured, mature adult cells. After stressing the cells almost to the point of death by exposing them to various stressful environments including trauma, a low oxygen and acidic environments, researchers discovered that within a period of only a few days, the cells survived and recovered from the stressful stimulus by naturally reverting into a state that is equivalent to an embryonic stem cell. With the proper culture conditions, those embryonic-like stem cells were propagated and when exposed to external stimuli, they were then able to redifferentiate and mature into any type of cell and grow into any type of tissue.

To examine the growth potential of these STAP cells, Vacanti and his team used mature blood cells from mice that had been genetically engineered to glow green under a specific wavelength of light. They stressed these cells from the blood by exposing them to acid, and found that in the days following the stress, these cells reverted back to an embryonic stem cell-like state. These stem cells then began growing in spherical clusters (like plant callus tissue). The cell clusters were introduced into developing mouse embryos that came from mice that did not glow green. These embryos now contained a mixture of cells (a “chimera”). The implanted clusters were able to differentiate into green-glowing tissues that were distributed in all organs tested, confirming that the implanted cells are pluripotent.

Thus, external stress might activate unknown cellular functions that set mature adult cells free from their current commitment to a particular cell fate and permit them to revert to their naïve cell state.

“Our findings suggest that somehow, through part of a natural repair process, mature cells turn off some of the epigenetic controls that inhibit expression of certain nuclear genes that result in differentiation,” said Vacanti.

Of course, the next step is to explore this process in more sophisticated mammals, and, ultimately in humans.

“If we can work out the mechanisms by which differentiation states are maintained and lost, it could open up a wide range of possibilities for new research and applications using living cells. But for me the most interesting questions will be the ones that let us gain a deeper understanding of the basic principles at work in these phenomena,” said first author Haruko Obokata, PhD.

If human cells can be made into embryonic stem cells by a similar process, then someday, a simple skin biopsy or blood sample might provide the material to generate embryonic stem cells that are specific to each individual, without the need for genetic engineering or killing the smallest among us. This truly creates endless possibilities for therapeutic options.

An Even Better Way to Make Induced Pluripotent Stem Cells

Researchers from the Centre for Genomic Regulation in Barcelona, Spain, have discovered an even faster and more efficient way to reprogram adult cells to make induced pluripotent stem cells (iPSCs).

This new discovery decreases the time it takes to derived iPSCs from adult cells from a few weeks to a few days. It also elucidated new things about the reprogramming process for iPSCs and their potential for regenerative medical applications.

iPSCs behave similarly to embryonic stem cells, but they can be created from terminally differentiated adult cells. The problem with the earlier protocols for the derivation of iPSCs is that only a very small percentage of cells were successfully reprogrammed (0.1%-2%). Also this reprogramming process takes weeks and is a rather hit-and-miss process.

The Centre for Genomic Regulation (CRG) research team have been able to reprogram adult cells very efficiently and in a very short period of time.

“Our group was using a particular transcription factor (C/EBPalpha) to reprogram one type of blood cells into another (transdifferentiation). We have now discovered that this factor also acts as a catalyst when reprogramming adult cells into iPS,” said Thomas Graf, senior group leader at the CRG and ICREA research professor.

“The work that we’ve just published presents a detailed description of the mechanism for transforming a blood cell into an iPS. We now understand the mechanics used by the cell so we can reprogram it and make it become pluripotent again in a controlled way, successfully and in a short period of time,” said Graf.

Genetic information is compacted into the nucleus like a wadded up ball of yarn. In order to access genes for gene expression, that ball of yarn has to be unwound so that the cell can find the information it needs.

The C/EBPalpha (CCAAT/Enhancer Binding Protein alpha) protein temporarily unwinds that region of DNA that contains the genes necessary for the induction of pluripotency. Thus, when the reprogramming process begin, the right genes are activated and they enable the successful reprogramming all the cells.

“We already knew that C/EBPalpha was related to cell transdifferentiation processes. We now know its role and why it serves as a catalyst in the reprogramming,” said Bruno Di Stefano, a PhD student. “Following the process described by Yamanaka the reprogramming took weeks, had a very small success rate and, in addition, accumulated mutations and errors. If we incorporate C/EBPalpha, the same process takes only a few days, has a much higher success rate and less possibility of errors, said Di Stefano.

This discovery provides a remarkable insight into stem cell-forming molecular mechanisms, and is of great interest for those studies on the early stages of life, during embryonic development. At the same time, the work provides new clues for successfully reprogramming cells in humans and advances in regenerative medicine and its medical applications.

Safe and Efficient Cell Reprogramming Inside a Living Animal

Research groups at the University of Manchester, and University College, London, UK, have developed a new technique for reprogramming adult cells into induced pluripotent stem cells that greatly reduces the risk of tumor formation.

Kostas Kostarelos, who is the principal investigator of the Nanomedicine Lab at the University of Manchester said that he and his colleagues have discovered a safe protocol for reprogramming adult cells into induced pluripotent stem cells (iPSCs). Because of their similarities to embryonic stem cells, many scientist hope that iPSCs are a viable to embryonic stem cells.

How did they do it? According to Kostarelos, “We have induced somatic cells within the liver of adult mice to transient behave as pluripotent stem cells,” said Kostarelos. “This was done by transfer for four specific gene, previously described by the Nobel-prize winning Shinya Yamanaka, without the use of viruses but simply plasmid DNA, a small circular, double-stranded piece of DNA used for manipulating gene expression in a cell.”

This technique does not use viruses, which was the technique of choice in Yamanaka’s research to get genes into cells. Viruses like the kind used by Yamanaka, can cause mutations in the cells. Kostarelos’ technique uses no viruses, and therefore, the mutagenic properties of viruses are not an issue.

Kostarelos continued, “One of the central dogmas of this emerging field is that in vivo implantation of (these stem) cells will lead to their uncontrolled differentiation and the formation of a tumor-like mass.”

However, Kostarelos and his team have determined that the technique they designed does not show this risk, unlike the virus-based methods.

“[This is the ] only experimental technique to report the in vivo reprogramming of adult somatic cells to plurpotentcy using nonviral, transient, rapid and safe methods,” said Kostarelos.

Since this approach uses circular plasmid DNA, the tumor risk is quite low, since plasmid DNA is rather short-lived under these conditions. Therefore, the risk of uncontrolled growth is rather low. While large volumes of plasmid DNA are required to reprogram these cells, the technique appears to be rather safe in laboratory animals.

Also, after a burst of expression of the reprogramming factors, the expression of these genes decreased after several days. Furthermore, the cells that were reprogrammed differentiated into the surrounding tissues (in this case, liver cells). There were no signs in any of the laboratory animals of tumors or liver dysfunction.

This is a remarkable proof-of-principle experiment that shows that reprogramming cells in a living body is fast and efficient and safe.

A great deal more work is necessary in order to show that such a technique can use useful for regenerative medicine, but it is certainly a glorious start.


Also involved in this paper were r, , and .

Pure Heart Muscle Cells from Induced Pluripotent Stem Cells With Molecular Beacons

Using induced pluripotent stem cells to have heart muscle cells is one of the goals of regenerative medicine. Successful cultivation of heart muscle cells from a patient’s own cells would provide material to replace dead heart muscle, and could potentially extend the life of a heart-sick patient.

Unfortunately, induced pluripotent stem cells, which are made by applying genetic engineering techniques to a patient’s own adult cells, like embryonic stem cells, will cause tumors when implanted into a living organism. To beat the problem of tumor formation, scientists must be able to efficiently isolate the cells that have properly differentiated from those cells that have not differentiated.

A new paper from a laboratory the Emory University School of Medicine in Atlanta, Georgia, have used “molecular beacons” to purify heart muscle cells from induced pluripotent stem cells, thus bringing us one step closer to a protocol that isolates pure heart muscle cells from induced pluripotent stem cells made from a patient’s own cells.

Molecular beacons are nanoscale probes that fluoresce when they bind to a cell-specific messenger RNA molecule. Because heart muscle cells express several genes that are only found in heart muscle cells, Kiwon Ban in the laboratory of Young-Sup Yoon designed heart muscle-specific molecular beacons and used them to purify heart muscle cells from cultured induced pluripotent stem cells from both mice and humans.

The molecular beacons made by this team successfully isolated heart muscle cells from an established heart muscle cell line called HL-1. Then Ban and co-workers applied these heart-specific molecular beacons to successfully isolate heart muscle cells that were made from human embryonic stem cells and human induced pluripotent stem cells. The purity of their isolated heart muscle cells topped 99% purity.

Finally, Ban and others implanted these heart muscle cells into the hearts of laboratory mice that had suffered heart attacks. When heart muscle cells that had not been purified were used, tumors resulted. However, when heart muscle cells that had been purified with their molecular beacons were transplanted, no tumors were observed and the heart function of the mice that received them steadily increased.

Because the molecular beacons are not toxic to the cells, they are an ideal way to isolate cells that have fully differentiated to the desired cell fate away from potentially tumor-causing undifferentiated cells. in the words of Ban and his colleagues, “This purification technique in combination with cardiomyocytes (heart muscle cells) generated from patient-specific hiPSCs will be of great value for drug screening and disease modeling, as well as cell therapy.”

Preventing the Rejection of Embryonic Stem Cell Derivatives – Take Two

Yesterday I blogged about the paper from Yang Xu’s group that used genetically engineered embryonic stem cells to make adult cell types that were not rejected by the immune systems of mice with humanized immune systems. I would like to say a bit more about this paper before I leave it be.

First of all, Xu and his colleagues engineered the cells to express the cell-surface protein PD-L1, which stands for programmed cell death ligand 1 (also known as CD274), and another protein called CTLA4-Ig. The combination of these two proteins tends to make these cells invisible to the immune system for all practical intents and purposes.

PD-L1, however, is used by tumor cells to evade detection by the immune system. For example, increased expression of PD-L1 is highly correlated with the aggressiveness of the cancer. One particular experiment examined 196 tumor specimens that had been extracted from patients with renal cell carcinoma (kidney tumors). In these tumor samples, high expression of PD-L1 was positively associated with increased tumor aggressiveness and a those patients that had higher expression of PD-L1 have a 4.5-fold increased risk of death (see Thompson RH, et al., Proc Natl Acad Sci USA 101 (49): 17174–9). In patients with cancer of the ovaries, those tumors with higher PD-L1 expression had a significantly poorer prognosis than those with lower PD-L1 expression. The more PD-L1 these tumors expressed, the fewer tumor-hunting T cells (CD8+ T cells) were present (see Hamanishi J, and others, Proc Natl Acad Sci USA 104 (9): 3360–5).

So the Xu paper proposes that we introduce genetically engineered cells, which are already at risk for mutations in the first place, into the body, that constitutively express PD-L1, a protein known to be highly expressed in the most aggressive and lethal tumors. Does this sound like a good idea?

With respect to CTLA4-Ig, this is a cell-bound version of a drug that has been approved as an anti-transplantation rejection drug called Belatacept (Nulojix), made by Bristol-Myers-Squibb. Since this is a cell-bound version of this protein, it will almost certainly not have the systemic effects of Belatacept, and if the cells manage to release a certain amount of soluble CTLA4-Ig, it is likely to be very little and have no biological effect.

Therefore, this strategy, while interesting, does come with its own share of risks and caveats.

Preventing Rejection of Embryonic Stem Cell-Based Tissues

Embryonic stem cells (ESCs) are derived from human embryos. Because they are pluripotent, or have the capacity to make any adult cell type, ESCs are thought to hold great promise for cell therapy as a source of differentiated cell types.

One main drawback to the use of ESCs in regenerative medicine is the rejection of ESC-derived cells by the immune system of the patient. Transplantation of ESC-derived tissues would require the patient to take powerful anti-rejection drugs, which tend to have a boatload of severe side effects.

However, a paper reports a strategy to circumvent rejection of ESC-derived cells. If these strategies prove workable, then they might clear the way to the use of ESCs in regenerative medicine.

The first paper comes from the journal Cell Stem Cell, by Zhili Rong, and others (Volume 14, Issue 1, 121-130, 2 January 2014). In this paper, Rong and his colleagues from the laboratory of Yang Xu at UC San Diego and their Chinese collaborators used mice whose immune systems had been reconstituted with a functional human immune system. These humanized mice mount a robust immune response against ESCs and any cells derived from ESCs.

In their next few experiments, Xu and others genetically engineered human ESCs to routinely express two proteins called CTLA4-Ig and PD-L1. Now this gets a little complicated, but stay with me. The protein known as CTLA4-Ig monkeys with particular cells of the immune system called T cells, and prevents those T cells from mounting an immune response against the cells that display this protein on their surfaces. The second protein, PD-L1, also targets T cells and when T cells bind to cells that have this protein on their surfaces, they are completely prevented from acting.

CTLA-4 mechanism

Think of it this way: T cells are the “detectives” of the immune system. When they find something fishy in the body (immunologically speaking), they get on their “cell phones” and call in the cavalry. However, when these detectives come upon these cells, their cell phones are inactivated, and their memories are wiped. The detectives wander away and then do not remember that they ever came across these cells.

Further experiments showed that any derivatives of these engineered ESCs, (teratomas, fibroblasts, and heart muscle cells) were completely tolerated by the immune system of these humanized mice.

This is a remarkable paper. However, I have a few questions. Genetic engineering of these cells might be potentially dangerous, depending upon how it was done, where in the genome the introduced genes insert, and how they are expressed. Secondly, if cells experience any mutations during the expansion of these cells, these mutations might cause the cells to be detected by the immune system. Third, do these types of immune repression last long-term? Clearly more work will need to be done, but these questions are potentially addressable.

My final concern is that if this procedure is used widespread, it might lead to the wholesale destruction of human embryos. Human embryos, however, are the youngest, weakest, and most vulnerable among us. What does that say about us if we do not value the weakest among us and dismember them for their cells? Would we allow this with toddlers?

Thus my interest and admiration for this paper is tempered by my concerns for human embryos.

Using Stem Cells for Muscle Repair

Stem cell treatments for muscular dystrophy and other degenerative diseases of muscle might be a realistic possibility, since scientists have discovered protocols to make muscle cells from human pluripotent stem cells.

Tiziano Barberi, Ph.D., chief investigator in the Australian Regenerative Medicine Institute (ARMI) at Monash University in Clayton, Victoria, and Bianca Borchin, a graduate student in the Barberi laboratory, have developed techniques to generate skeletal muscle cells. Barberi and Borchin isolated muscle precursor cells from human pluripotent stem cells (hPSCs), after which they applied a purification technique that allows these cells to differentiate further into muscle cells.

Pluripotent stem cells, such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), have the ability to become any cell in the human body, including skeletal muscles, which control movement. Once the stem cells begin to differentiate, controlling that process is very challenging, but essential in order to produce only the desired cells. Barberi and Borchin used a technique known as fluorescence activated cell sorting (FACS) to identify those cells that contained the precise combination of protein markers that are expressed in muscle precursor cells. FACS also enabled them to successfully isolate those muscle precursor cells.

“There is an urgent need to find a source of muscle cells that could be used to replace the defective muscle fibers in degenerative disease. Pluripotent stem cells could be the source of these muscle cells,” Dr. Barberi said. “Beyond obtaining muscle from hPSCs, we also found a way to isolate the muscle precursor cells we generated, which is a prerequisite for their use in regenerative medicine.”

Borchin said there were existing clinical trials based on the use of specialized cells derived from hPSCs in the treatment of some degenerative diseases, but deriving muscle cells from pluripotent stem cells proved to be challenging. “These results are extremely promising because they mark a significant step towards the use of hPSCs for muscle repair,” she said.

“The production of a large number of pure muscle precursor cells does not only have potential therapeutic applications, but also provides a platform for large-scale screening of new drugs against muscle disease,” Dr. Barberi added.

This study was published early online Nov. 27 in Stem Cell Reports.  This study does not address the immune response against dystrophin that has plagued gene therapy and stem cell-based muscular dystrophy clinical trials that has been noted in previous posts.  The use of embryonic stem cells, in particular, would create muscles that are not tissue matched to the patient and would generate robust inflammation against the implanted muscles.   Thus embryonic stem cells would generate a “cure” that would be much worse than the disease itself.  Nevertheless, adapting the Barberi-Borchin protocol to induced pluripotent stem cells would produce skeletal muscle cells that are tissue matched to the patient.

Human Stem Cells Converted into Functional Lung Cells

Scientists from the Columbia University Medical Center have succeeded in transforming human stem cells into functional lung and airway cells. This finding has significant potential for modeling lung disease, screening lung-specific drugs, and, hopefully, generating lung tissue for transplantation.

Study leader, Hans-Willem Snoeck, professor of medicine and affiliated with the Columbia Center for Translational Immunology and the Columbia Stem Cell Initiative, said, “Researchers have had relative success in turning human stem cells into heart cells, pancreatic beta cells, intestinal cells, liver cells, and nerve cells, raising all sorts of possibilities for regenerative medicine. Now, we are finally able to make lung and airway cells. This is important because lung transplants have a particularly poor prognosis. Although any clinical application is still many years away, we can begin thinking about making autologous lung transplants – that is, transplants that use a patient’s own skin cells to generate functional lung tissue.”

The research builds on Snoeck’s earlier discoveries in 2011 that a set of chemical factors could induce the differentiation of embryonic or induced pluripotent stem cells into “anterior foregut endoderm,” which is the embryo in the tissue from which the lungs form (Green MD, et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol. 2011 Mar;29(3):267-72).

Human Embryological Development - one month

In his new study, Snoeck and his colleagues found new factors that can transform anterior foregut endoderm cells into lung and airway cells. In particular, Snoeck and his co-workers were able to establish the presence of “type 2 alveolar epithelial cells,” which secrete the lung surfactant that maintains the lung alveoli (those tiny sacs in the lung where all the oxygen exchange takes place).

lung alveolus

With these techniques, lung researchers hope to study diseases like idiopathic pulmonary fibrosis (IPF), in which type 2 epithelial cells seem to divide and produce scarring in the lungs.

“No one knows what causes the disease, and there’s no way to treat it,” said Snoeck. “Using this technology, researchers will finally be able to create laboratory models of IPF, study the disease at the molecular level, and screen drugs for possible treatments or cures. In the longer term, we hope to use this technology to make an autologous lung graft. This would entail taking a lung from a donor, removing all the lung cells, leaving only the lung scaffold; and seeding the scaffold with new lung cells derived from the patient. In this way, rejection problems could be avoided.”

Snoeck is investigating this approach in collaboration with researchers in the Columbia University Department of Biomedical Engineering.

A More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies

An improved method to produce heart muscle from embryonic stem cells or induced pluripotent stem cells could potentially fulfill the demand for heart disease treatments and models of testing new heart drugs. The challenging part of making heart muscle in the laboratory is the production of cells that are all the same. Otherwise their response to drugs or their transplantation into a damaged heart will be unpredictable and unreliable. Fortunately a new study published in the journal STEM CELLS Translational Medicine may provide a way to make large, homogeneous batches of heart muscle cells.

By mixing some small molecules and growth factors together, an international research team led by investigators at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai developed a two-step system that induced embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to efficiently differentiate into ventricular heart muscle cells. This protocol was not only highly efficient but also very reproducible. It also seemed to nicely recapitulate the developmental steps of normal heart development.

“These chemically induced, ventricular-like cardiomyocytes (termed ciVCMs) exhibited the expected cardiac electrophysiological and calcium handling properties as well as the appropriate heart rate responses,” said lead investigator Ioannis Karakikes, Ph.D., of the Stanford University School Of Medicine, Cardiovascular Institute. Other members of this research team consisted of scientists from the Icahn School of Medicine at Mount Sinai, New York, and the Stem Cell & Regenerative Medicine Consortium at the University of Hong Kong.

One of the unusual aspects of this research project was the integrated approach it took. This research group combined computational and experimental systems and by using these techniques, they showed that the use of particular small molecules modulated the Wnt pathway. Signals from the Wnt pathway pass from cell to cell and play a key role in determining whether cells differentiate into an atrial or ventricular muscle cell.

“The further clarification of the molecular mechanism(s) that underlie this kind of subtype specification is essential to improving our understanding of cardiovascular development. We may be able to regulate the commitment, proliferation and differentiation of pluripotent stem cells into heart muscle cells and then harness them for therapeutic purposes,” Dr. Karakikes said.

“Most cases of heart failure are related to a deficiency of heart muscle cells in the lower chambers of the heart,” said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “An efficient, cost-effective and reproducible system for generating ventricular cardiomyocytes would be a valuable resource for cell therapies as well as drug screening.”

Australian Researchers Make A Kidney in the Laboratory With Stem Cells

Stem cell researchers from the University of Queensland in Australia have successfully grown a kidney in the laboratory with stem cells. This new breakthrough will almost certainly open the door to improved treatments for patients with kidney disease, and bodes well for the future of organ bioengineering.

Mini-kidney in dish. (Source: University of Queensland)
Mini-kidney in dish. (Source: University of Queensland)

The principal investigator of this research project, Professor Melissa Little, from University of Queensland’s Institute for Molecular Bioscience (IMB), said that new treatments for kidney disease were urgently needed.

“One in three Australians is at risk of developing chronic kidney disease and the only therapies currently available are kidney transplant and dialysis,” Little said. “Only one in four patients will receive a donated organ, and dialysis is an ongoing and restrictive treatment regime. We need to improve outcomes for patients with this debilitating condition, which costs Australia $1.8 billion a year.”

Little’s research team designed a new step-wise protocol to coax embryonic stem cells to gradually form all the required kidney-specific cell types and to induce them to “self-organize” into a mini-kidney in a dish.  The embryonic stem cell line HES3 was used in this work, which derived by Reubinoff and others in the laboratory of Alan Trounson in 2000.

“During self-organization, different types of cells arrange themselves with respect to each other to create the complex structures that exist within an organ, in this case, the kidney,” Little said. “The fact that such stem cell populations can undergo self-organization in the laboratory bodes well for the future of tissue bioengineering to replace damaged and diseased organs and tissues. It may also act as a powerful tool to identify drug candidates that may be harmful to the kidney before these reach clinical trial.”

Despite the success of this research, Little cautioned that she and other kidney researchers had a great deal of work to do to before this protocol might be ready for human trials. Regardless, it is a very exciting step forward.

The Queensland Minister for Science and Innovation Ian Walker congratulated Little and her co-workers for their advances, and added that biomedical research was crucial in ensuring a healthier future for Queenslanders.

“The work by the IMB research team is an important milestone in developing improved treatments for chronic kidney disease and will ensure those with the condition can continue to live fulfilling and productive lives,” Walker said.

Little’s research team included Dr. Minoru Takasato, Pei Er, Melissa Becroft, Dr. Jessica Vanslambrouck, from IMB, and her collaorators, Professors Andrew Elefanty and Ed Stanley, from the Murdoch Children’s Research Institute and Monash University.

The research is published in the scientific journal Nature Cell Biology and supported by the Queensland Government, the Australian Research Council, as part of the Stem Cells Australia Strategic Research Initiative, and the National Health and Medical Research Council of Australia.

Adding One Gene to Cells can Regrow Hair, Cartilage, Bone and Soft Tissues

The reactivation of a gene called Lin28a, which is active in embryonic stem cells, can regrow hair and repair cartilage, bone, skin, and other soft tissues in mice.

This study comes from scientists at the Stem Cell Program at Boston Children’s Hospital who found that the Lin28a promotes tissue repair by enhancing metabolism in mitochondria, which are the energy-producing engines in cells. These data suggest that upregulation of common “housekeeping” functions might provide new ways to develop regenerative treatments.

George Q. Daley, the director of Boston Children’s Hospital Stem Cell Transplantation Program, said, “Efforts to improve wound healing and tissue repair have mostly failed, but altering metabolism provides a new strategy which we hope will prove successful.”

One of the first authors of this paper, Shyh-Chang Ng, added, “Most people would naturally think that growth factors are the major players in wound healing, but we found that the core metabolism of cells is rate-limiting in terms of tissue repair. The enhanced metabolic rate we saw when we reactivated Lin28a is typical of embryos during their rapid growth phase.”

Lin28a was first discovered in worms, but the Lin28a gene is found in all animals. It is abundantly expressed in embryonic stem cells and during early embryonic development. Stem cell scientists have even used Lin28a to help reprogram adult cells into induced pluripotent stem cells. Lin28a encodes an RNA-binding protein that regulates the translation of messenger RNAs into protein.

To express more of this protein in mice, Daley and his colleagues attached the Lin28a gene to a piece of DNA that would drive expression when the mice were fed the drug doxycycline. Ng and others noticed that one of the targets of Lin28a was a small RNA molecule called Let-7, which is known to promote aging and cell maturation. Let-7 is a member of a class of non-coding RNA molecules called micro-RNAs that bind to messenger RNAs and prevent their translation.  Let-7 is made as a larger precursor molecule that is processed to a smaller molecule that is functional.  LIN28 binds specifically to the primary and precursor forms of Let-7, and inhibits Let-7 processing.

Lin28a function

Ng said, “We were confident that Let-7 would be the mechanism, but there was something else involved.”

Let-28a is known to activate the translation of several different genes that play a role in basic energy metabolism (e.g., Pfkp, Pdha1, Idh3b, Sdha, Ndufb3, and Ndufb8), Activation of these genes enhances oxidative metabolism and promotes an embryonic bioenergetic state.

In their Lin28a transgenic mice, Daley, Ng and others noticed that Lin28a definitively enhanced the production of metabolic enzymes in mitochondria, and that these “revved up” the mitochondria so that they generated the energy needed to stimulate and grow new tissues.


“We already know that accumulated defects in mitochondria can lead to aging in many cells and tissues,” said Ng. We are showing the converse: enhancement of mitochondrial metabolism can boost tissue repair and regeneration, recapturing the remarkable repair capacity of juvenile animals. ”

Further experiments showed that bypassing Lin28a and directly activating mitochondrial metabolism with small molecules had the same effect on wound healing. This suggests that pharmaceuticals might induce regeneration and enhance tissue repair.

“Since Lin28 itself is difficult to introduce into cells, the fact that we were able to activate mitochondrial metabolism pharmacologically gives us hope,” said Ng.

Lin28a did not cause universal regeneration of all tissues. Heart tissue, for example, was poorly aided by Lin28a. Also, Lin28a induced the regeneration of severed finger tips in newborn mice, but not in adult mice.

Nevertheless, Lin28a could be a key factor in constituting a kind of healing cocktail, in combination with other embryonic factors yet to be found.

Human Fat Contains Multilineage Differentiating Stress Enduring Cells With Great Potential for Regenerative Medicine

A collaboration between American and Japanese scientists has discovered and characterized a new stem cell population from human fat that do not cause tumors and can differentiate into derivatives from ectoderm, mesoderm, and endoderm.

Multilineage Differentiating Stress-Enduring or Muse cells are found in bone marrow and the lower layers of the skin (dermis). Muse cells are a subpopulation of mesenchymal stem cells, and even express a few mesenchymal stem cell-specific genes (e.g., CD105, a cell-surface protein specific to mesenchymal stem cells). However, Muse cells also express cell surface proteins normally found in embryonic stem cells (e.g., stage-specific embryonic antigen-3, SSEA-3). Additionally, Muse cells have the ability to self-renew, and differentiate into cell types from all three embryonic germ layers, ectoderm (which forms skin and brain), mesoderm, (which forms muscle, bone, kidneys, gonads, heart, blood vessels, adrenal glands, and connective tissue), and endoderm (which forms the gastrointestinal tract and its associated tissues). Finally, Muse cells can home to damaged sites and spontaneously differentiate into tissue-specific cells as dictated by the microenvironment in which the cells find themselves.

A new publication by Fumitaka Ogura and others from Tohoku University Graduate School of Medicine in Sendai, Japan and Saleh Heneidi from the Medical College of Georgia (Augusta, Georgia), and Gregorio Chazenbalk from the David Geffen School of Medicine at UCLA has shown that Muse cells also exist in human fat.

The source of cells came from two places: commercially available fat tissue and freshly collected fat from human subjects, collected by means of liposuction. After growing these cells in culture, the mesenchymal stem cells and Muse cells grew steadily over the 3 weeks. Then the Dezawa research group used fluorescence-activated cell sorting (FACS) to isolate from all these cells those cells that express SSEA-3 on their cell surfaces.

FACS uses antibodies conjugated to dyes that can bind to specific cell proteins. Once the antibodies bind to cells, the cells are sluiced through a small orifice while they are illuminated by the laser. The laser activates the dyes if the cell fluoresces, one door opens and the other closes. The cell goes to one test tube. If the cell does not fluoresce, then the door stay shut and another door opens and the cell goes into a different test tube.  In this way, cells with a particular cell-surface protein are isolated from other cells that do not have that cell-surface protein.

Fluorescent-Activated Cell Sorting
Fluorescent-Activated Cell Sorting

In addition to expression SSEA-3, the fat-based Muse cells expressed other mesenchymal stem cell-specific cell-surface proteins (CD29, CD90), but they did not express proteins usually thought to be diagnostic for fat-based mesenchymal stem cells (MSCs) such as CD34 and CD146.  Muse cells also expressed pluripotency genes (Nanog, Oct3/4, PAR4, Sox2, and Tra-1-81).  The Muse cells grew in small clusters and some cell expressed ectodermal-specific genes (neurofilament, MAP2), others expressed mesodermal-specific genes (smooth muscle actin, NKX2) and endodermal-specific genes (alpha-fetoprotein, GATA6).  These data suggested that the cultured Muse cells were poised to form either ectoderm, mesodermal, or endodermal derivatives.

When transplanted into mice with non-functional immune systems, the Muse cells never formed any tumors or disrupted the normal structure of the nearly tissues.  When placed in differentiating media, fat-derived Muse cells differentiated into cells with neuron-like morphology that expressed neuron-specific genes (Tuj-1), liver cells, and fat.  When compared with Muse cells from bone marrow or skin, the fat-derived Muse cells were better at making bone, fat, and muscle, but not as good as bone marrow Muse cells at making neuronal cell types, but not as good at making glial cells.  Many of these assays were based on gene expression experiments and not more rigorous tests.  Therefore, the results of these experiments might be doubtful until they are corroborated by more rigorous experiments.

These cells are expandable and apparently rather safe to use.  More work needs to be done in order to fully understand the full regenerative capacity of these cells and protocols for handling them must also be developed.  However, hopefully pre-clinical experiments in rodents will give way to larger animal experiments.  If these are successful, then maybe human trials come next.  Here’s to hoping.

Induced Pluripotent Stem Cells Recapitulate ALS in Culture and Suggest New Treatment

Induced pluripotent stem cells are made from the adult cells of an individual by means of genetic engineering techniques. After introducing four different genes into adult cells, some of the cells de-differentiate to form cells that grow indefinitely in culture and have most of the characteristics of embryonic stem cells. However, if iPSCs are made from a patient who suffers from a genetic disease, then those stem cells will have the same mutation as the patient, and any derivatives of those iPSCs will show the same behaviors and pathologies of the tissues from the patient. This strategy is called the “disease in a dish” model and it is being increasingly used to make seminal discoveries about diseases and treatment strategies.

Scientists from Cedars-Sinai Regenerative Medicine Institute have used iPSC technology to study Lou Gehrig’s disease, and their research has provided a new approach to treat this horrific, debilitating disease.

Because I have previously written about Lou Gehrig’s disease or Amyotrophic Lateral Sclerosis (ALS), I will not describe it further.

Cedar Sinai scientists isolated skin scrapings from each patient and used the skin fibroblasts from each sample to make iPSCs. According to Dhruv Sareen, the director of the iPSC facility and faculty research scientist with the Department of Biomedical Sciences and the first author on this article, skins cells of patients who have ALS were converted into motor neurons that retained the genetic defects of the disease, thanks to iPSC technology. Then they focused on gene called C9ORF72, which was found to be the most common cause of familial ALS and frontotemporal lobar disease, and is even responsible for some cases of Alzheimer’s and Parkinson’s disease.

Mutations in a gene that has the very non-descriptive name “chromosome 9 open reading frame 72” or C9ORF72 for short seems to play a central role in the onset of Lou Gehrig’s disease. Mutations in C9orf72 have been linked with familial frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). FTD is a brain disorder that typically leads to dementia and sometimes occurs in tandem with ALS.

Mutations in C9ORF72 result from the expansion of a hexanucleotide repeat GGGGCC. When the C9ORF72 gene is replicated, the enzyme that replicates DNA (DNA polymerase) has a tendency to slip when comes to this stretch of nucleotides and this polymerase slip causes the hexanucleotide GGGGCC sequence to wax and wane (expand and shrink). Normally, there are up to 30 repeats of this GGGCC sequence, but in people with mutations in C9ORF72, this GGGGCC repeat can occur many hundreds of times. Massive expansions of the GGGGCC repeat interferes with normal expression of the protein made by C9ORF72. The presence of messenger RNAs (mRNAs) with multiple copies of GGGGCC in the nucleus and cytoplasm is toxic to the cell, since it gums up protein synthesis, RNA processing and other RNA-dependent functions. Also the lack of half of the C9ORF72 protein contributes to the symptoms of this conditions.

Robert Baloh, director of Cedars-Sinai’s Neuromuscular Division and the lead researcher of this research project, said, “We think this buildup of thousands of copies of the repeated sequence GGGGCC in the nucleus of patient’s cells may become toxic by altering the normal behavior of other genes in the motor neurons. Because our studies supported the toxic RNA mechanism theory, we used to small segments of genetic material called antisense oligonucleotides – ASOs – to block the buildup and degrade the toxic RNA. One ASO knocked down overall C9ORF72 levels. The other knocked down the toxic RNA coming from the gene without suppressing overall gene expression levels. The absence of potentially toxic RNA, and no evidence of detrimental effect on the motor neurons, provides a strong basis for using this strategy to treat patients suffering from these diseases.”

Baloh continued: “In a sense, this represents the full spectrum of what we are trying to accomplish with patient-based stem cell modeling. It gives researchers the opportunity to conduct extensive studies of a disease’s genetic and molecular makeup and develop potential treatments in the laboratory before translating them into patient trials.”

Researchers from another institution recently began a phase one clinical trial that used a similar ASO strategy to treat ALS caused by a different mutation. No safety issues were reported in this clinical trial.

Clive Svendsen, director of the Regenerative Medicine Institute and one of the authors, has investigated ALS for more than a decade, said, “ALS may be the cruelest, most severe neurological disease, but I believe the stem cell approach used in this collaborative effort holds the key to unlocking the mysteries of the and other devastating disorders. Within the Regenerative Medicine Institute, we are exploring several other stem cell-based strategies in search of treatments and cures.”

ALS affects 30,000-50,000 people in the US alone, but unlike other neurodegenerative diseases, it is almost always fatal within three to five years.

Scientists Generate “Mini-kidney” Structures from Human Stem Cells

Kidney Disease represents a major and unsolved health issue worldwide. Once damaged by disease, kidneys rarely recover their original level of function, and this highlights the urgent need for better knowledge of kidney development and physiology.

Now, a team of researchers led by scientists at the Salk Institute for Biological Studies has developed a novel platform to study kidney diseases. This new platform should open new avenues for the future application of regenerative medical strategies to restore kidney function.

For the first time, the Salk researchers have generated three-dimensional kidney structures from human stem cells. These findings were reported November 17, 2013 in Nature Cell Biology, and they suggest new ways to study the development and diseases of the kidneys and to discover and test new drugs that target human kidney cells.

Scientists had created precursors of kidney cells using stem cells as recently as this past summer, but the Salk team was the first to coax human stem cells into forming three-dimensional cellular structures similar to those found in our kidneys.

“Attempts to differentiate human stem cells into renal cells have had limited success,” says senior study author Juan Carlos Izpisua Belmonte, a professor in Salk’s Gene Expression Laboratory and holder of the Roger Guillemin Chair. “We have developed a simple and efficient method that allows for the differentiation of human stem cells into well-organized 3D structures of the ureteric bud (UB), which later develops into the collecting duct system.”

The Salk findings demonstrate for the first time that pluripotent stem cells capable of differentiating into the many cells and tissue types that make up the body can be induced to differentiate into those cells found in the ureteric bud, which is an early developmental structure of the kidneys. Furthermore, these same cells can differentiate further into three-dimensional structures in organ cultures. Ureteric bud cells form the early stages of the human urinary and reproductive organs during development and later develop into a conduit for urine drainage from the kidneys. Izpisua Belmonte’s research group accomplished this with both human embryonic stem cells and induced pluripotent stem cells (iPSCs), human cells from the skin that have been reprogrammed into their pluripotent state.

Kidney development

After generating iPSCs that demonstrated pluripotent properties and were able to differentiate into mesoderm, the embryonic germ cell layer from which the kidneys develop, the Salk Institute team used growth factors known to be essential during the natural development of our kidneys to culture both iPSCs and embryonic stem cells.  The combination of signals from these growth factors, molecules that guide the differentiation of stem cells into specific tissues, committed the cells to become progenitors that exhibit clear characteristics of renal cells in only four days.

The researchers then guided these cells to further differentiate into organ structures similar to those found in the ureteric bud by culturing them with kidney cells from mice. This demonstrated that the mouse cells were able to provide the appropriate developmental cues to allow human stem cells to form three-dimensional structures of the kidney.

Izpisua Belmonte’s team also tested their protocol on iPSCs from a patient clinically diagnosed with polycystic kidney disease (PKD), a genetic disorder characterized by multiple, fluid-filled cysts that can lead to decreased kidney function and kidney failure. They found that their methodology could produce kidney structures from patient-derived iPSCs.

Polycystic kidneys
Polycystic kidneys

Because of the many clinical manifestations of the disease, neither gene- nor antibody-based therapies are realistic approaches for treating PKD. The Salk team’s technique might help circumvent this obstacle and provide a reliable platform for pharmaceutical companies and other investigators studying drug-based therapeutics for PKD and other kidney diseases.

“Our differentiation strategies represent the cornerstone of disease modeling and drug discovery studies,” says lead study author Ignacio Sancho-Martinez, a research associate in Izpisua Belmonte’s laboratory. “Our observations will help guide future studies on the precise cellular implications that PKD might play in the context of kidney development.”

Adult Stem Cell Research Has Defeated Embryonic Stem Cells for Funding Priorities

Mallory Quigley from LifeNews has written an article on a report by the Charlotte Lozier Institute, which analyzes funding trends in stem cell research in the state of Maryland. Funding for non-embryonic stem cells greatly outnumbers funding for embryonic stem cells. Read the article here.

“Noncontroversial” Embryonic Stem Cells?

An article from Bioscience Technology, a working scientist’s rag, has argued that everyone can have their lifetime supply of embryonic stem cells. Below is a summary of the article, after which I will comment on it.

Susan Fisher is the director of the UCSF Human Embryonic Stem Cell program. Last week, her lab reported that they have efficiently created embryonic stem cell lines from the cells removed from early embryos for Preimplantation Genetic Diagnosis (PGD) clinics. PGD takes a single cell from an early embryo that was created by means of in vitro fertilization, and subjects that single cell to genetic analyses to determine if the embryo carries a genetic disease. Because early human embryos have the ability to “regulate,” the removal of a single simply spurs the cells of the embryo to undergo extra cell divisions. The embryos subjected to PGD are then either destroyed, if they harbor a genetic disease, or implanted into the mother’s womb and gestated.

However, these cells removed from embryos could also be used to make an embryonic stem cell culture, since they could be seeded in culture to make an embryonic stem (ES) cell line. Therefore, in theory, cells could now be routinely removed from in vitro fertilization (IVF) clinic embryos, to provide them with a lifetime supply of their own embryonic stem cells. Because these cells were made without destroying embryos, they would be uncontroversial.

“Back in the mid-2000’s, when California was trying to decide whether to fund ES cell research, thousands of interested people would come out to hear us speak about topics like this,” says Fisher, interviewed after her report to the New York Stem Cell Foundation conference last week. “It is possible this particular, refined approach will generate that kind of interest now.”

ES cells have the greatest potency of any human stem cells and they can potentially form every cell type in the adult human body. Because such cells were recently harvested, they would not possess any of the mutations that ES cultures can acquire when they are grown for long periods of time in culture.

Traditionally, ES cell lines have been derived from stored, spare embryos from IVF clinics that were donated by other patients. Therefore, they are not immunologically identical to patients who potentially need them. Patients who receive non-matching tissues must take harsh immunosuppressive drugs for years to avoid rejecting the cells, and even then, over time the immune eventually wins the fight in some cases.

In recent years, scientists have turned to induced Pluripotential Stem Cells (IPSCs). IPSCs are made by genetically engineering adult cells to express four genes that de-differentiate the cells so that they are embryonic-like cells. IPSCs have been a boon to research, since scientists hace used them to make “disease in a dish” models on which to try drugs. But IPSCs are often riddled with mutations, as they come from adults. They have not yet hit the clinic as a result (although trials are upcoming).

However, Fisher, following on the heels of very preliminary work published in the journal Nature by the biotechnology company ACT, has refined the ability to create possibly uncontroversial stem cells—that are immunological matches to patients. By removing one cell from a very young human embryo, Fisher thinks that scientist might be able to produce a veritably unlimited supply of ES cells that are immunologically identical to the embyros from which they came. And as the embryos aren’t destroyed, but implanted into the mothers’ uteruses, the derivation of these tailor-made ES cells should be uncontroversial. “We will see how this is received,” Fisher says.

The process, she reported, is robust, if still not easy to pull off. This procedure, however, is labor-intensive and required a great deal of skill to pull off. In Fisher’s lab at UCSF, they derived ten human ES cell lines from four eight-cell embryos and one 12-cell embryo from a single couple.

When compared to standard ES cells, the UCSF lines were healthy and “formed derivatives of the three germ layers” like standard ES cells. Furthermore, these cells could form trophoblasts (placental cells), and Fisher’s team used them to create the first human trophoblast stem cell line. This is something that standard ES cells cannot do and this could make the UCSF cells useful in the clinic for diseases affecting the placenta.

Will patients begin turning to such cells? A few companies in the mid-2000s started offering designer ES cells like these, but that practice ended due to lack of interest or understanding, Fisher says. Additionally, some technical problems—later fully rectified—associated with the earlier Nature ACT paper may have cast a pall on enthusiasm for the approach, others in the field note.

“It remains to be seen if a place will be found for both iPS and ES cells,” Fisher concludes.

Now follows my comments:

Human embryos are very young human beings.  They do not have the right to vote, own property, or get a driver’s license, but they at least have the right not to be harmed.  By withdrawing cells from the embryo, you are potentially harming it.  “But wait,” proponents will tell you, “there are hundreds or even thousands of children who have been born who grew from embryos that were subjected to PGD and their rates of birth defects are no higher than everyone else’s.”  So their rates of birth defects are lower, but have we followed them for the rest of their lives to establish that removing a blastomere during early development does no harm?

“Oh come on,” you say.  But there are studies in mice that show that removing blastomere from early embryos does not cause higher rates of birth defects, but it does cause higher rates of neurological defects that manifest later in life.  Yu and others found that “mice generated after blastomere biopsy showed weight increase and some memory decline compared with the control group. Further protein expression profiles in adult brains were analyzed by a proteomics approach. A total of 36 proteins were identified with significant differences between the biopsied and control groups, and the alterations in expression of most of these proteins have been associated with neurodegenerative diseases. Furthermore hypomyelination of the nerve fibers was observed in the brains of mice in the biopsied group. This study suggested that the nervous system may be sensitive to blastomere biopsy procedures and indicated an increased relative risk of neurodegenerative disorders in the offspring generated following blastomere biopsy.”  In another paper, Yang and others showed that “blastomere biopsy, increases the rate of embryo death at 4.5-7.5 dpc, but does not affect the development of surviving 7.5 dpc embryos.”  In human embryos, time-lapse photography of biopsied embryos by Kirkegaard K, Hindkjaer JJ and Ingerslev HJ showed that “blastomere biopsy prolongs the biopsied cell-stage, possibly caused by a delayed compaction and alters the mechanism of hatching.”  Finally, Sugawara and others showed that “The data demonstrate that blastomere biopsy deregulates steroid metabolism during pregnancy. This may have profound effects on several aspects of fetal development, of which low birth weight is only one. If a similar phenomenon occurs in humans, it may explain low birth weights associated with PGD/ART and provide a plausible target for improving PGD outcomes.”

There is reason to believe that this procedure potentially hurts the embryo.  Also, not all blastomeres in the early embryo are equally competent to make ES lines (see Lorthongpanich et al., Reproduction. 2008 Jun;135(6):805-1).  Therefore, if more than one blastomere must be taken from the embryo, the risks to it definitely increases (see Groossens et al., Hum. Reprod. (2008) 23 (3): 481-492).  The embryo has a basic right not to be harmed, but PGD potentially harms it without its consent.  This is barbaric.  With any other procedure we would say so, but this seems to be alright because we are dealing with embryos and they are too small and young.  This is ageism and size discrimination.  These are not “uncontroversial stem cells.”  They are anything but.  

Cardiac Muscle Repair with Molecular Beacons

Pure heart muscle cells that are ready for transplantation. This is one of the Holy Grails of regenerative medicine. Of course when working with pluripotent stem cell lines, isolating nothing but beating heart muscle cells is rather difficult. A new technique makes the isolation of pure cultures of beating heart muscle cells that much easier.

Researchers at Emory and Georgia Tech have developed a method that utilizes molecules called “molecular beacons” to isolate heart muscle cells from pluripotent stem cells. Molecular beacons fluoresce when they come into contact with cells that express certain genes. In this case, the beacons target cells that express heart-specific myosin.

Physicians can use these purified cardiac muscle cells to heal damaged areas of the heart in patient that have suffered a heart attack or are suffering heart failure. This molecular beacon technique might also have applications in other fields of regenerative medicine as well.

“Often, we want to generate a particular cell population from stem cells for introduction into patients,” said Young-sup Yoon, professor of medicine and director for stem cell biology at Emory University School of Medicine. “But the desired cells often lack a readily accessible surface marker, or that marker is not specific enough, as is the case for cardiac muscle cells. This technique could allow us to purify almost any type of cell.”

Gang Bao pioneered he use of molecular beacons and was a co-author of this publication. Yoon and is colleagues and collaborators grew mouse and human embryonic stem cells and induced pluripotent stem cells and differentiated them into heart muscle cells (cardiomyocytes). They then used molecular beacons to label only those cells that expressed messenger RNAs with just the right sequences. These molecular beacons hybridized with the mRNAs and fluoresced. Bao and others then used flow cytometry to sort the fluorescent cells from the non- fluorescent cells. The fluorescent cells have differentiated into heart muscle cells and were isolated from all the other cells.

These purified heart muscle cells could engraft into the heart of a mouse that had suffered a heart attack and they improved heart function and formed no tumors. This proof-of-principle experiment shows that this technique is feasible.

“In previous experiments with injected bare cells, investigators at Emory and elsewhere found that a large proportion of the cells are washed away. We need to engineer the cells into compatible biomaterials to enhance engraftment and retention,” said Yoon,

Spiking Stem Cells to Generate Myelin

Regenerating damaged nerve tissue represents a unique challenge for regenerative medicine. Nevertheless, some experiments have shown that it is possible to regenerate the myelin sheath that surrounds particular nerves.

Myelin is a fatty, insulating sheath that surrounds particular nerves and accelerates the transmission of nerve impulses. The myelin sheath also helps neurons survive, and the myelin sheath is attacked and removed in multiple sclerosis, a genetic disease called Charcot-Marie-Tooth disease, and spinal cord injuries. Being able to regenerate the myelin sheath is an essential goal of regenerative medicine.

Fortunately, a new study from a team of UC Davis (my alma mater) scientists have brought this goal one step closer. Wenbig Deng, principal investigator of this study and associate professor of biochemistry and molecular medicine, said, “Our findings represent an important conceptual advance in stem cell research. We have bioengineered the first generation of myelin-producing cells with superior regenerative capacity.”

The brain contains two main cell types; neurons and glial cells. Neurons make and transmit nerve impulses whereas glial cells support, nourish and protect neurons. One particular subtype of glial cells, oligodendrocytes, make the myelin sheath that surrounds the axons of many neurons. Deng and his group developed a novel protocol to induce embryonic stem cells (ESCs) to differentiate into oligodendrocyte precursor cells or OPCs. Even though other researchers have made oligodenrocytes from ESCs, Deng’s method results in purer populations of OPCs than any other available method.

Making OPCs from ESCs is one thing, but can these laboratory OPCs do everything native can do? When Deng and his team tested the electrophysiological properties of their laboratory-made OPCs, they discovered that their cells lacked an important component; they did not express sodium channels. When the lab-made OPCs were genetically engineered to express sodium channels, they generated the characteristic electrical spikes that are common to native OPCs. According to Deng, this is the first time anyone has made OPCs in the laboratory with spiking properties. Is this significant?

Deng and his colleagues compared the spiking OPCs to non-spiking OPCs in the laboratory. Not only did the spiking OPCs communicate with neurons, but they also did a better job of maturing into oligodentrocytes.

Transplantation of these two OPC populations into the spinal cord and brains of mice that are genetically unable to produce myelin also showed differences. Both types of OPCs were able to mature into oligodendrocytes and produce myelin sheaths, but only the spiking OPCs had the ability to produce longer and thicker myelin sheaths.

Said Deng, “We actually developed ‘super cells’ with an even greater capacity to spike than natural cells. This appears to give them an edge for maturing into oligodendrocytes and producing better myelin.

Human neural tissue has a poor capacity to regenerate and even though OPCs are present, they do not regenerate tissue effectively when disease or injury damages the myelin sheath. Deng believes that replacing glial cells with the enhanced spiking OPCs to treat injuries and diseases has the potential to be a better strategy than replacing neurons, since neurons are so problematic to work with in the laboratory. Instead providing the proper structure and environment for neurons to live might be the best approach to regenerate healthy neural tissue. Deng also said that many diverse conditions that have not been traditionally considered to be myelin-based diseases (schizophrenia, epilepsy, and amyotrophic lateral sclerosis) are actually now recognized to involve defective myelin.

On that one, I think Deng is dreaming. ALS is caused by the death of motor neurons due to mechanisms that are intrinsic to the neurons themselves. Giving them all the myelin in the world in not going to help them. Also, OPCs made from ESCs will be rejected out of hand by the immune system if they are used to regenerate myelin in the peripheral nervous system. The only hope is to keep them in the central nervous system, but even there, any immune response in the brain will be fatal to the OPCs. This needs to be tested with iPSCs before it can be considered for clinical purposes.

Transformation of Non-Beating Human Cells into Heart Muscle Cells Lays Foundation for Regenerating Damaged Hearts

After a heart attack, the cells within the damaged part of the heart stop beating and become ensconced in scar tissue. Not only does this region not beat, it does not conduct the signal to beat either and that can not only lead to a slow, sluggish heartbeat, it can also cause irregular heart rates or arrhythmias.

Now, however, scientists have demonstrated that this damage to the heart muscle need not be permanent. Instead there is a way to transform those cells that form the human scar tissue into cells that closely resemble beating heart cells.

Last year, researchers from the laboratory of Deepak Srivastava, MD, the director of Cardiovascular and Stem Cell Research at the Gladstone Institute, transformed scar-forming heart cells (fibroblasts) into beating heart-muscle cells in live mice. Now they report doing the same to human cells in a culture dishes.

“Fibroblasts make up about 50 percent of all cells in the heart and therefore represent a vast pool of cells that could one day be harnessed and reprogrammed to create new muscle,” said Dr. Srivastava, who is also a professor at the University of California, San Francisco. “Our findings here serve as a proof of concept that human fibroblasts can be reprogrammed successfully into beating heart cells.”

In 2012, Srivastava and his team reported that fibroblasts could be reprogrammed into beating heart cells by injecting just three genes (collectively known as GMT, which is short for Gata4, Mef2c, and Tbx5), into the hearts of live mice that had been damaged by a heart attack (Qian L, et al., Nature. 2012 31;485(7400):593-8). From this work, they reasonably concluded that the same three genes could have the same effect on human cells.

“When we injected GMT into each of the three types of human fibroblasts (fetal heart cells, embryonic stem cells and neonatal skin cells) nothing happened—they never transformed—so we went back to the drawing board to look for additional genes that would help initiate the transformation,” said Gladstone staff scientist Ji-dong Fu, Ph.D., the study’s lead author. “We narrowed our search to just 16 potential genes, which we then screened alongside GMT, in the hopes that we could find the right combination.”

The research team began by injecting all candidate genes into the human fibroblasts. They then systematically removed each one to see which were necessary for reprogramming and which were dispensable. In the end, they found that injecting a cocktail of five genes—the 3-gene GMT mix plus the genes ESRRG and MESP1—were sufficient to reprogram the fibroblasts into heart-like cells. They then found that with the addition of two more genes, called MYOCD and ZFPM2, the transformation was even more complete.

To help things along, the team used a growth factor known as Transforming Growth Factor-Beta (TGF-Beta) to induce a signaling pathway during the early stages of reprogramming that further improved reprogramming success rates.

“While almost all the cells in our study exhibited at least a partial transformation, about 20 percent of them were capable of transmitting electrical signals—a key feature of beating heart cells,” said Dr. Fu. “Clearly, there are some yet-to-be-determined barriers preventing a more complete transformation for many of the cells. For example, success rates might be improved by transforming the fibroblasts within living hearts rather than in a dish—something we also observed during our initial experiments in mice.”

The immediate next steps are to test the five-gene cocktail in hearts of larger mammals. Eventually, the team hopes that a combination of small, drug-like molecules could be developed to replace the cocktail, which would offer a safer and easier method of delivery.

This latest study was published online August 22 in Stem Cell Reports.