Mesenchymal Stem Cell Transplantation Improves Atherosclerotic Lesions


Several animal studies have shown that transplantation of mesenchymal stem cells from several different sources is beneficial in myocardial infarction and hind limb ischemic. However, can these cells improved atherosclerosis, otherwise known as hardening of the arteries?

Shih-Chieh Hung and colleagues from National Yang-Ming University in Taipei, Taiwan tested this very hypothesis.

Hung and others used to lines of experimentation to address this question. First, they used cultured endothelial cells that had been treated with oxidized low-density lipoprotein particles. Secondly, they fed mice mutant for ApoE-deficient a high-fat diet.  ApoE-deficient humans and mice develop atherosclerotic plaques rather quickly.

In the cultured endothelial cells, oxidized LDL turned off the production of nitric oxide (NO). NO is a signaling molecule produced by several cell types, but in particular, endothelial cells use NO to dilate blood vessels. NO also is a good signal of endothelial health. Therefore, when oxidized LDL causes cultured endothelial to decrease NO production, it is affecting endothelial cell health. However, when cultured endothelial cells that had been treated with oxidized LDL were cocultured with mesenchymal stem cells, NO production and the enzymes that synthesize NO increased precipitously. Thus in a cultured system, MSCs have the ability to prevent the deleterious of oxidized LDL.

In ApoE-deficient mice fed a high fat diet, the arteries of the mice showed extensive plaque formation. However, if these animals were implanted with bone-marrow-derived mesenchymal stem cells, plaque formation was greatly decreased. Further work showed that a protein secreted by mesenchymal stem cells called macrophage inflammatory protein-2 (MIP-2) was responsible for these ameliorative effects. If MIP-2 was applied without mesenchymal stem cells, plaque formation was limited, and if antibodies that neutralize MIP-2 were co-administered with mesenchymal stem cells, the cells failed to reduced plaque formation.

Thus, this interesting study shows that transplantation of mesenchymal stem cells can limit plaque formation in atherosclerotic animals and they do this through secretion of MIP-2. Secondly, mesenchymal stem cells can improve the health of endothelial cells, which are the cells that form the inner layer of blood vessels, which are so adversely affected by atherosclerosis. By utilizing the encore of proteins secreted by mesenchymal stem cells, scientists should be able to develop a cocktail of proteins that can ameliorate atherosclerosis in human patients.

Differentiation of Induced Pluripotent Stem Cells Decreases Immune Response Against Them


The goal of regenerative medicine is to replace dead or damaged cells, tissues and even organs with living, properly functioning cells tissues and organs. However, this goal has a few genuine barriers that include tumor formation in the case of pluripotent stem cells, poor cell survival, or even immunological rejection of the transplanted cells before they can render any long-term benefits. Induced pluripotent stem cells (iPSCs), which are made from adult cells by a combination of genetic engineering and cell culture techniques, can be made from a patient’s own mature cells and the differentiated into almost any tissue in the adult body. However, research with mouse iPSCs has shown that even stem cells produced from the subject’s own tissues can be rejected by the subject’s own immune system.

Immune rejection of iPSCs is a legitimate concern, but research from the Stanford University School of Medicine has shown that differentiation of iPSCs into more mature cells before transplantation into mice allows them to be tolerated by the immune system.

Joseph Wu, MD, PhD, director of the Stanford Cardiovascular Institute, said, “Induced pluripotent stem cells have tremendous potential as a source for personalized cellular therapeutics for organ repair. This study shows that undifferentiated iPS cells are rejected by the immune system upon transplantation in the same recipient, but that fully differentiating these cells allows for acceptance and tolerance by the immune system without the need for immunosuppression.”

Wu is the senior author of this publication, which appeared online on May 30th in Nature Communications. Lead authorship of this paper is shared by Patricia Almeida, PhD, and Nigel Kooreman, MD, and assistant professor of medicine Everett Meyer, MD, PhD.

Several other studies have suggested that differentiation of iPSCs can reduce their tendency to activate the immune system after transplantation. However, this study of Wu and others is the first to closely examine, at the molecular and cellular level, how this works.

“We’ve demonstrated definitively that, once the cells are differentiated, the immune response to iPS-derived cells is indistinguishable from its response to unmodified tissue derived from elsewhere in the body,” said lead author Nigel Kooreman.

Pluripotent stem cells have the capacity to differentiate into any cell in the adult body. Of the two types of pluripotent stem cells, embryonic stem cells are made from embryos and iPSCs are made in the laboratory from existing adult cells (e.g., skin or blood). Induced pluripotent stem cells are easier to come by than embryonic stem cells, they match the genetic background of the person from whom they were obtained, and they are not as ethically dubious as embryonic stem cells. Thus, in theory, iPSCs are a good option for any physician who wants to make patient-specific stem cells for potential therapies.

Previous studies in mice have shown, however, that even genetically identicaliPSCs can trigger an immune response after transplantation. Thus, Wu and his colleagues have, for the past six years, been investigating how to use immunosuppressive medications to dampen the body’s response to both embryonic andiPSCs and render them more amenable for clinical use (see AS Lee, et al., J Biol Chem 2011 286(37):32697-704; Durruthy-Durruthy L, et al.,PLoS One, 2014 9(4):e94231 and others).

In this recent study, Kooreman and his co-lead authors decided to examine the immune response against transplanted stem cells. They first transplanted undifferentiated iPS cells into the leg muscles of genetically identical recipient mice. These grafts were rejected and no iPSCs were detected six weeks after transplantation.

Next, Wu and his co-workers differentiated the iPSCs into blood vessel-making endothelial cells that line the interior of the heart and blood vessels and then transplanted them into genetically-identical mice. Kooreman, Almeida, and Meyer then compared the acceptance by the immune system of these iPSC-derived endothelial cells with that of naturally occurring endothelial cells derived from the aortic lining of genetically-identical donor mice. To emphasize once again, all the transplanted cells were genetically identical to the mice in which they were injected. Unlike the undifferentiated iPS cells, both the iPS-derived endothelial cells and the aortic endothelial cells survived for at least nine weeks after transplantation.

Next, Wu and his group repeated the experiment, but they removed the grafts 15 days after transplantation. They observed immune cells called lymphocytes in all grafts, but these immune cells were much more prevalent in the grafts of undifferentiated iPS cells. When the lymphocytes that infiltrated the grafts of undifferentiated iPSCs were compared with those in the differentiated iPSC-derived grafts and the endothelial grafts, their gene expression profiles differed significantly. Those lymphocytes in the undifferentiated iPSC grafts expressed high levels of genes known to be involved in robust immune responses, but lymphocytes in both types of endothelial cell grafts expressed higher levels of genes known to be involved in dampening the immune response and inducing self-tolerance.

Finally, Wu and others directly examined a specific type of lymphocyte called a T cell. Grafts of undifferentiated iPS cells harbored large numbers of T cells that were largely homogeneous, which is characteristic of a robust immune response. Conversely, T cell from grafts of the two types of endothelial cells were more diverse, which suggests a more limited immune response which is typically associated with a phenomenon known as self-tolerance.

“The immune response to the iPS-derived endothelial cells and the aortic endothelial cells, and the longevity of the grafts, was very similar,” said Kooreman. “If we specifically look at the T cells, we see they’re also very similar and that they look much different from grafts that are rejected.”

Wu, who is also a professor of cardiovascular medicine and of radiology, said, “This study certainly makes us optimistic that differentiation — into any nonpluripotent cell type — will render iPS cells less recognizable to the immune system. We have more confidence that we can move toward clinical use of these cells in humans with less concern than we’ve previously had.”

Making Heart Muscle from Skeletal Muscle Stem Cells


Several experiments in animals and a few clinical trials in human patients have shown that implanting skeletal muscle cells isolated from muscle biopsies into the heart after a heart attack can help the heart to some degree, but the implanted skeletal muscle cells do not integrate into the existing heart muscle mass and the skeletal muscle cells do not differentiate into heart muscle cells.

Experiments like those mentioned above utilized muscle satellite cells. Muscle satellite cells are a resident stem cell population that respond to muscle damage and divide to form skeletal muscle cells form new muscle. Satellite cells are a perfect example of a unipotent stem cell, which is to say a cell that makes one type of terminally differentiated cell type.

Skeletal muscles, however, have another cell population called muscle-derived stem cells or MDSCs. MDSCs express an entirely different set of cell surface proteins than satellite cells, and have the capacity to differentiate into skeletal muscle, smooth muscle, bone, tendon, nerve, endothelial and hematopoietic cells. MDSCs grow well in culture, tolerate low oxygen conditions quite well, and show excellent regenerative potential.

Other laboratories have managed to culture MDSCs in collagen and produce beating heart muscle cells. Others have observed MDSCs forming a proper myocardium under certain conditions. Several studies have established the ability to MDSCs to treat laboratory animals that have suffered a heart attack. The most recent work from Sekiya and others has established that cell sheets made from MDSCs can reduce dilation of the left ventricle, increased capillary density, and promoted recovery without causing erratic heat beat patterns.

Despite their obvious efficacy. MDSCs remain difficult to isolate in high enough numbers to therapeutic purposes. None of the cell surface molecules sported by MDSCs are unique to those cells. Therefore, getting clean cultures of MDSCs remains a challenge. Still, these cells represent some of the best hopes for regenerative medicine in the heart. These cells do form heart muscle cells and heal ailing hearts. They can be grown in bioreactors to high numbers and can also be combined with engineered materials to shore up a damaged heart and mediate its regeneration. While the use of MDSCs is still in its infancy, the promise certainly is there.

Reversing Lung Diseases By Directing Stem Cell Differentiation


Lung diseases can scar the respiratory tissues necessary for oxygen exchange. Without proper oxygen exchange, our cells lack the means to make the energy they so desperately need, and they begin to shut down or even die. Lung diseases such as asthma, emphysema, chronic obstructive pulmonary disease and others can permanently diminish lung capacity, life expectancy and activity levels.

Fortunately, a preclinical study in laboratory animals has suggested a new strategy for treating lung diseases. Carla Kim and Joo-Hyeon Lee of the Stem Cell Research Program at Boston Children’s have described a new lung-specific pathway that is activated by lung injury and directs a resident stem cell population in the lung to proliferate and differentiate into lung-specific cell types.

When Kim and Lee enhanced this pathway in mice, they observed increase production of the cells that line the alveolar sacs where gas exchange occurs. Alveolar cells are irreversibly damaged in emphysema and pulmonary fibrosis.

Inhibition of this same pathway increased stem cell-mediated production of airway epithelial cells, which line the passages that conduct air to the alveolar sacs and are damaged in asthma and bronchiolitis obliterans.

For their experiments, Kim and Lee used a novel culture system called a 3D culture system that mimics the milieu of the lung. This culture system showed that a single bronchioalveolar stem cell could differentiate into both alveolar and bronchiolar epithelial cells. By adding a protein called TSP-1 (thrombospondin-1), the stem cells differentiated into alveolar cells.

Next, Kim and Lee utilized a mouse model of pulmonary fibrosis. However, when they cultured the small endothelial cells that line the many small blood vessels in the lung, which naturally produce TSP-1, and directly injected the culture fluid of these cells into the mice, the noticed these injections reverse the lung damage.

When they used lung endothelial cells that do not produce TSP-1 in 3D cultures, lung-specific stem cells produce more airway cells. in mice that were engineered to not express TSP-1, airway repair was enhanced after lung injury.

Lung Stem Cell Repair of Lung Damage

Lee explained his results in this way: “When the lung cells are injured, there seems to be a cross talk between the damaged cells, the lung endothelial cells and the stem cells.”

Kim added: “We think that lung endothelial cells produce a lot of repair factors besides TSP-1. We want to find all these molecules, which could provide additional therapeutic targets.”

Even though this work is preclinical in nature, it represents a remarkable way to address the lung damage that debilitates so many people. Hopefully this work is easily translatable to human patients and clinical trials will be in the future. Before that, more confirmation of the role of TSP-1 is required.

Adult Stem Cells Help Build Human Blood Vessels in Engineered Tissues


University of Illinois researchers have identified a protein expressed by human bone marrow stem cells that guides and stimulates the construction of blood vessels.

Jalees Rehman, associate professor of cardiology and pharmacology at the University of Illinois at Chicago College of Medicine and lead author of this paper, said: “Some stem cells actually have multiple jobs.”

As an example, stem cells from bone marrow known as mesenchymal stem cells can form bone, cartilage, or fat, but they also have a secondary role in that they support other cells in bone marrow.

Rehman and others have worked on developing engineered tissues for use in cardiac patients, and they noticed that mesenchymal stem cells were crucial for organizing other cells into functional stem cells.

Workers from Rehman’s laboratory mixed mesenchymal stem cells from human bone marrow with endothelial cells that line the inside of blood vessels. The mesenchymal stem cells elongated and formed a kind of scaffold upon which the endothelial cells adhered and organized to form tubes.

“But without the stem cells, the endothelial cells just sat there,” said Rehman.

When the cell mixtures were implanted into mice, blood vessels formed that were able to support the flow of blood. Then Rehman and his colleagues examined the genes expressed when their stem cells and endothelial cells were combined. They were aided in this venture by two different bone marrow stem cell lines, one of which supported the formation of blood vessels, and the other of which did.

Their microarray experiments showed that the vessel-supporting mesenchymal stem cells expressed high levels of the SLIT3 protein. SLIT3 is a blood vessel-guidance protein that directs blood vessel-making cells to particular places and induces them to make blood vessels. The cell line that do not stimulate blood vessel production made little to no SLIT3.

Rehman commented, “This means that not all stem cells are created alike in terms of their SLIT3 production and their ability to encourage blood vessel formation.”

Rehman continued: “While using a person’s own stem cells for making blood vessels is ideal because it eliminates the problem of immune rejection, it might be a good idea to test a patient’s stem cells to make sure they are good producers of SLIT3. If they aren’t, the engineered vessels may not thrive or even fail to grow.

Mesenchymal stem cells injections are being evaluated in clinical trials to see if their can help grow blood vessels and improve heart function in patients who have suffered heart attacks.

So far, the benefits of stem cell injection have been modest, according to Rehman. Evaluating the gene and protein signatures of stem cells from each patient may allow for a more individualized approach so that every patient receives mesenchymal stem cells that are most likely to promote blood vessel growth and cardiac repair. Such pre-testing might substantially improve the efficacy of stem cell treatments for heart patients.

Repairing Damaged Organs with New Blood Vessel-Making Stem Cells


A damaged organ usually needs to be removed (spleen or single kidney) or a new organ must be transplanted to replace the damaged organ (liver, heart, lungs, kidney). Wouldn’t it be terrific to inject blood vessel-making stem cells and let the organ heal itself? Such a strategy would render organ transplantation obsolete.

Studies by scientists at the Weill Cornell Medical College in New York have shown that endothelial cells – the cells that line the inside of blood vessels – can drive the regeneration of organ by releasing beneficial, organ-specific molecules. These organ-specific molecules were identified in a genome-wide screen that uncovered all the genes actively expressed in endothelial cells. Many of these genes found in this screen were previously not known to be expressed in endothelial cells. Researchers also found that organ dictate the structure and function of their own blood vessels and this includes the organ-specific repair molecules they elicit from endothelial cells.

Endothelial_cell

Shahin Rafii, principal investigator of this work, is a professor of genetic medicine and co-director of the medical college’s Ansary Stem Cell Institute and the Tri-SCI Stem Center. Rafii is also a Howard Hughes Medical Institute investigator.

According to Rafii, when an organ in injured, its blood vessels may not have the ability to repair the organ on their own because of the damage to the blood vessels themselves, and the inflammation these same blood vessels might be experiencing.

“Our work suggests that an infusion of engineered endothelial cells could engraft into the injured tissue and acquire the capacity to repair the organ. These studies – along with the first molecule atlas of organ-specific blood vessel cells reported in the Developmental Cell paper (Developmental Cell 26, 204–219, July 29, 2013) – will open up a whole new chapter in translational vascular medicine and will have a major therapeutic application.”

Rafii continued: “Scientists had thought blood vessels in each organ are the same, that they exist to deliver oxygen and nutrients. But they are very different.” According to Rafii, different organs are endowed with blood vessels with unique shape and function and delegated with the difficult task of complying with the metabolic demands of that organ.

In one study from the Rafii lab, nine different tissues were examined, in addition to bone marrow and liver that had undergone a traumatic injury. To examine the blood vessels from each of these tissues, Rafii’s laboratory development a very efficient way to make endothelial cells from embryonic stem cells. Daniel Nolan, the lead author of this work, said that this protocol produced a “a pure population of endothelial cells in a very rapid time frame.”

ECs Derived from hESCs Phenocopy Adult Mouse Tissue-Specific Capillaries (A) Schema of in vitro conditions to support the differentiation and identification of hESC-derived vasculature. hESCs are grown on an E4-ORF1 EC feeder layer and transduced with a VE-Cadherin-Orange reporter gene. VE-Cadherin-Orange+ vascular networks are readily identifiable by day 10. (B) Flow cytometry data depicting the expression of VPR-Orange on hESC-derived CD31+ ECs. These VPR+ ECs have distinct populations based on the expression of either CXCR4 (teal) or CD133 (purple). (C) VPR+CXCR4+CD133− and VPR+CD133+CXCR4− ECs are capable of forming distinct clusters of ECs in hESC cultures. (D) Heat maps of the genes, which were common in their statistically significant differential expression (Benjamini-Hochberg adjusted p < 0.05) between hESC-derived vasculature and adult mouse heart and brain tissues. (E) VPR+CXCR4+CD133− and VPR+CD133+CXCR4− ECs were analyzed for cKit and CD36 levels via flow cytometry. Validation of the higher expression of CD36 and Kit in the CXCR4+ ECs is shown. (F) Heat map of K-Mean clusters depicting the results of de novo motif discovery among non-ECs, CXCR4+VPR+ ECs, and CD133+VPR+ ECs. Candidate binding partners to the motifs are listed.
ECs Derived from hESCs Phenocopy Adult Mouse Tissue-Specific Capillaries.  (A) Schema of in vitro conditions to support the differentiation and identification of hESC-derived vasculature. hESCs are grown on an E4-ORF1 EC feeder layer and transduced with a VE-Cadherin-Orange reporter gene. VE-Cadherin-Orange+ vascular networks are readily identifiable by day 10.  (B) Flow cytometry data depicting the expression of VPR-Orange on hESC-derived CD31+ ECs. These VPR+ ECs have distinct populations based on the expression of either CXCR4 (teal) or CD133 (purple).  (C) VPR+CXCR4+CD133− and VPR+CD133+CXCR4− ECs are capable of forming distinct clusters of ECs in hESC cultures.  (D) Heat maps of the genes, which were common in their statistically significant differential expression (Benjamini-Hochberg adjusted p < 0.05) between hESC-derived vasculature and adult mouse heart and brain tissues.  (E) VPR+CXCR4+CD133− and VPR+CD133+CXCR4− ECs were analyzed for cKit and CD36 levels via flow cytometry. Validation of the higher expression of CD36 and Kit in the CXCR4+ ECs is shown.  (F) Heat map of K-Mean clusters depicting the results of de novo motif discovery among non-ECs, CXCR4+VPR+ ECs, and CD133+VPR+ ECs. Candidate binding partners to the motifs are listed.

From these laboratory-made endothelial cells (ECs), Rafii and his colleagues were able to take snapshots of all the genes expressed in various populations of ECs can compose the different vascular beds of the body. From these studies, Raffi and others discovered that ECs possess specific genes that code for unique growth factors, adhesion molecules, and factors regulating metabolism.

“We knew that these gene products were critical to the health of a particular tissue, but before our study it was not appreciated that these factors originate in the endothelial cells,” said Nolan.

Olivier Elemento, who performed much of the complex computational studies in this paper, noted, “We also found that the healing, or regeneration of tissue, in the liver and in the bone marrow were unexpectedly different – including the repair molecules, known as angiocrine growth factors, that were expressed by the endothelial cells.”

Blood vessels differ among the various organs because the ECs have to constantly adapt to the metabolic, biomechanical, inflammatory, and immunological needs of that particular organ, said Michael Ginsberg, a senior postdoctoral research associate in Rafii’s lab. “And we have now found how endothelial cells have learned to behave differently in each organ and to adjust to the needs of those organs,” he said.

This work from Raffii’s laboratory raises the question as to how ECs have the capacity to adapt to the biological demands of each organ. Is it possible to design “immature” ECs that could allow scientists to identify the means by which particular microenvironmental cues educate these cells to become more specialized endothelial cells?

To address this question, Rafii and his army of graduate students, postdoctoral researchers, technicians, and visiting scientists made ECs from mouse embryonic stem cells and discovered that these cells were responsive to microenvironmental cues, and were also transplantable and functional.

Sina Rabbany, adjunct associate professor of genetic medicine and bioengineering at Weill Cornell Medical College said that embryonic stem cell derived ECs are “very versatile, so they can be transplanted into different tissues, become educated by the tissue, and acquire the characteristics of the native endothelial cells.” These ECs can also be grown in the lab into large numbers.

“We now know what it takes to keep these cells healthy, stable, and viable for transplantation,” said Rabbany.

When the ECs made by Rabbany were transplanted into the livers of laboratory mice, they integrated into the host tissue and become indistinguishable from the native tissue. Similar results were observed when these laboratory-derived ECs were transplanted into kidneys.

The Use of Synthetic Messenger RNAs Augment Heart Regeneration and Healing After a Heart Attack


A collaborative effect between researchers at Harvard University and Karolinska Institutet has shown that the application of particular factors to the heart after a heart attack can heal the heart and induce the production of new heart muscle.

Kenneth Chien, who has a dual appointment at the medical university Karolinska Institutet and Harvard University, led this research teams said this about this work: “This is the beginning of using the heart as a factory to produce growth factors for specific families of cardiovascular stem cells, and suggests that it may be possible to generate new heart parts without delivering any new cells to the heart itself.”

This study builds upon previous work by Chien and his colleagues in which the growth factor VEGFA, which is known to activate the growth of endothelial cells in the adult heart (endothelial cells line blood vessels), also serves as a switch that converts heart stem cells away from making heart muscle to forming coronary vessels in the fetal heart.

To drive the expression of VEGFA in the heart, Chien and others made synthetic messenger RNAs that encoded VEGFA and injected them into the heart cells. Injections of these synthetic VEGFA messenger RNAs produced a short burst of VEGFA.

Chien induced a heart attack in mice and then administered the synthetic VEGFA messenger RNAs to some mice and buffer to others 48 hours after the heart attacks. Chien and his crew was sure to inject the synthetic VEGFA mRNAs into the regions of the heart known to harbor the resident cardiac stem cell populations.

Not only did the VEGFA-mRNA-injected mice survive better than the other mice, but their hearts had smaller heart scars, and had clear signs of the growth of new heart muscle that had been made by the resident cardiac stem cell populations. One pulse of VEGFA had long-term benefits and those cells that would have normally made the heart scar ended up making heart muscle instead as a result of one pulse of VEGFA.

Chien said of this experiment, “This moves us very close to clinical studies to regenerate cardiovascular tissue with a single chemical agent without the need for injecting any additional cells into the heart.”

At the same time, Chien also noted that this technology is in the early stages of development. Even though these mice had their chests cracked open and their hearts injected, for human patients, the challenge is to adapt heart catheter technologies to the delivery of synthetic messenger RNAs. Also, to demonstrate the safety and efficacy of this technology to humans, Chien and others will need to repeat these experiments in larger animals that serve as a better model system for the human heart than rodents. Chien’s laboratory is presently in the process of doing that.

To adapt catheter technology to deliver these reagents, Chien had co-founded a company called Moderna Therapeutics to research this problem and develop the proper platform technology for clinical use. Chien is also collaborating with the biotechnology company AstraZeneca to help expedite moving the synthetic RNA technology into a clinical setting.

Reducing the Heart Scar After a Heart Attack


After a heart attack, inflammation in the heart kills off heart muscle cells and fibroblasts in the heart make a protein called collagen, which forms a heart scar. The heart scar does not contract and does not conduct electrochemical signals. The scar will contract over time, but its presence can lead to abnormal heart rhythms, also known as arrhythmias. Arrythmias can be fatal, since they can cause a heart attack. To prevent a heart attack, physicians will treat heart attack patients with a group of drugs called beta-blockers that slow down the heart rate and protect the heart from the deleterious effects of norepinephrine (secreted by the sympathetic nerve inputs to the heart). An alternative treatment is digoxin or digitalis, which is a chemical found in foxglove. Digitalis inhibits ion pumps in heart muscle cells and slows the heart and the force of its contractions. Digitalis, however, interacts with a whole shoe box fill of drugs, has a very long half-life, and is hard to dose. Therefore it is not the first choice.

Given all this, helping the heart to make a smaller heart scar is a better strategy for treating a heart after a heart attack. To accomplish this, you need to inhibit the heart fibroblasts that make the heart scar in the first place. Secondly, you must move something into the place of the dead cells. Otherwise, the heart could burst or scar tissue will move into the area anyway.

To that end, Yigang Wang and his colleagues at the University of Cincinnati Medical Center in Ohio have published an ingenious paper in which they tried two different strategies to reduce the size of the heart scar, which concomitantly increased the colonization of the heart by induced pluripotent stem cells engineered to express a sodium-calcium exchange pump.

Previously, Wang and his colleagues used a patch to heal the heart after a heart attack. The patch consisted of endothelial cells, which make blood vessels, induced pluripotent stem cells engineered to make a sodium-calcium exchange pump called NCX1, and embryonic fibroblasts. This so-called tri-cell patch makes new blood vessels, establishes new heart muscle, and the foundational matrix molecules to form a platform for beating heart muscle.

In order to get these cells to spread throughout the injured heart, Wang and others used a reagent that specifically inhibits heart fibroblasts. They used a small non-coding RNA molecule. A group of microRNAs called miR-29 family are downregulated after a heart attack. As it turns out, these microRNAs inhibit a group of genes that involved in collagen deposition. Therefore, by overexpressing miR-29 microRNAs, they could prevent collagen deposition and reduce scar formation.

The experimental design in this paper is rather complex. Therefore, I will go through it slowly. First, they tried to overexpress miR-29 microRNAs in cultured heart fibroblasts and sure enough, they inhibited collagen synthesis. Cells overexpressing miR-29 made less than a third of the collagen of their normal counterparts. When they placed these fibroblasts into the heart and induced heart attacks, again, they made significantly less collagen when they were expressing miR-29.

Then they used their miR-29 RNAs by injecting them directly into the heart before inducing a heart attack, and then after the heart attack, they applied the tri-patch. Their results were significant. The scar size was smaller (almost one-third the size of the controls), and the density of blood vessels was much higher in the tri-patched hearts treated with miR-29. The induced pluripotent stem cells differentiated into heart muscle cells and spread throughout the heart. Heart function measures also consistently went up too.  The echiocardiograph before more normal, the ejection fraction went up, the % shortening of the heart muscle fibers was increased, and the relaxation phase of the heart (diastole) also was not so puffy (see graphs and figures below).

(A): M-mode echocardiograph data in three groups. (B): Quantification analysis for heart function. Quantitative data for LVDd (B-1), LVDs (B-2), EF (B-3), and FS (B-4) 4 weeks after Tri-P implantation. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. Anti-29b+MI+Tri-P group. LVDd, left ventricular enddiastolic diameters; LVDs, left ventricular end-systolic diameters; EF, ejection fraction index; FS, fractional shortening. All values expressed as mean 6 SEM. n = 6 for each group. (C): Two-D mode echocardiograph data in three groups, analyzed by long-axis and short-axis views. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. miR-29b+MI+Tri-P group. Ctrl, control mimic pretreatd rat with Tri-cell patch graft; miR-29b, miR- 29b mimic pretreated rat with Tri-cell patch graft; Anti-29b, miR-29b inhibitor pretreated rat with Tri-cell patch graft. White dotted lines indicate endocardium and epicardium.
(A): M-mode echocardiograph data in three groups. (B): Quantification analysis for heart function. Quantitative data for LVDd (B-1), LVDs (B-2), EF (B-3), and FS (B-4) 4 weeks after Tri-P implantation. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. Anti-29b+MI+Tri-P group. LVDd, left ventricular enddiastolic diameters; LVDs, left ventricular end-systolic diameters; EF, ejection fraction index; FS, fractional shortening. All values expressed as mean 6 SEM. n = 6 for each group. (C): Two-D mode echocardiograph data in three groups, analyzed by long-axis and short-axis views. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. miR-29b+MI+Tri-P group. Ctrl, control mimic pretreatd rat with Tri-cell patch graft; miR-29b, miR-29b mimic pretreated rat with Tri-cell patch graft; Anti-29b, miR-29b inhibitor pretreated rat with Tri-cell patch graft. White dotted lines indicate endocardium and epicardium.

There is a cautionary note to this study. Inhibiting collagen formation after a heart attack could create soft fragile regions of the heart that are subject to rupture should the vascular systolic pressure increase. While that threat was not observed in this study, human hearts, which are much larger, would be much more susceptible to such a mishap. Therefore, while this study is interesting and suggest a strategy in humans, it requires more testing and refinement before anyone can even think about applying it to humans.

Urinary Stem Cells and Their Therapeutic Potential


Yuanyuan Zhang, assistant professor of regenerative medicine at Wake Forest Baptist Medical Center’s Institute for Regenerative Medicine, has extended earlier work on stem cells from urine that suggests that these cells might be more therapeutically useful than previously thought.

These urinary stem cells can be isolated from a patient’s urine sample, and they can be induced, in the laboratory, to form bladder-type cells; smooth muscle and urothelial (bladder-lining) cells. Such stem cells could certainly be used to treat urinary tract problems, even though a good deal more work is required to confirm that they can do just that.

Nevertheless, Zhang and his co-workers have discovered that these urinary tract stem cells are much more plastic than previously thought. In the laboratory, Zhang and others have managed to differentiate urinary tract stem cells into bone, cartilage, fat, skeletal muscle, nerve, and endothelial cells (the cells that line blood vessels). This suggests that urine-derived stem cells could be used in a variety of therapies.

USCs undergo multipotential differentiation in vitro. (a-c) endothelial differentiation of USCs. USCs (p3) were induced to endothelial lineage by culture in EBM-2 medium containing VEGF 50 ng/ml for 14 days. (a) In vitro vessel formation. Endothelial differentiated USCs were cultured on Matrigel for 18h to form branched networks (angiogenesis) and tubular structures. Scale bar = 100μm. (b) Expression analysis of endothelial-specific transcripts by RT-PCR. (c) Immunofluorescence staining using endothelial-specific markers revealed enhanced staining of the markers with differentiation (middle row) compared to the non-treated control (top row). Scale bar = 50μm.
USCs undergo multipotential differentiation in vitro. (a-c) endothelial differentiation of
USCs. USCs (p3) were induced to endothelial lineage by culture in EBM-2 medium containing
VEGF 50 ng/ml for 14 days. (a) In vitro vessel formation. Endothelial differentiated USCs were
cultured on Matrigel for 18h to form branched networks (angiogenesis) and tubular structures. Scale
bar = 100μm. (b) Expression analysis of endothelial-specific transcripts by RT-PCR. (c)
Immunofluorescence staining using endothelial-specific markers revealed enhanced staining of the
markers with differentiation (middle row) compared to the non-treated control (top row). Scale bar =
50μm.

Zhang said that urinary tract stem cells could be used to treat urological disorders such a kidney disease, urinary incontinence, and erectile dysfunction. However, Zhang is optimistic that they can also be used to treat a wider variety of treatment options, such as making replacement bladders, urine tubes, and other urologic organs.

Since these stem cells come from the patient’s own body, they can have a low chance of being rejected by the immune system. Also, they do not cause tumors when implanted into laboratory animals.

In their latest work, Zhang and his colleagues obtained urine samples from 17 healthy individuals whose ages ranged from five to 75 years old. Even though these stem cells are only one of a large collection of cells in urine, isolating urinary stem cells from urine only requires minimal processing.

A single USC (inset) is followed through different passages (p0-p12). The cells were expanded to a colony were cultured in KSFM-EFM medium with 5% serum and images recorded with passage. Images shown at x100
A single USC (inset)
is followed through different passages (p0-p12). The cells were expanded to a colony were cultured in
KSFM-EFM medium with 5% serum and images recorded with passage. Images shown at x100

In the laboratory, Zhang and his team differentiated the cells into derivatives of all three embryological layers (endoderm – skin and nervous tissue; mesoderm – bone, muscle, glands, and blood vessels; and endoderm – digestive system).

Differentiation of one USC clone into UCs and SMCs. (a) USCs (p3) t were used to differentiate into two distinct lineages. Culture in SMCs-lineage differentiation (2.5 ng/ml TGF-􀈕1 and 5 ng/ml PDGF-BB) and UCs-lineage differentiation (30 ng/ml EGF) medium was used for 14 days.
Differentiation of one USC clone into UCs and SMCs. (a) USCs (p3) t were used to
differentiate into two distinct lineages. Culture in SMCs-lineage differentiation (2.5 ng/ml TGF-􀈕1 and
5 ng/ml PDGF-BB) and UCs-lineage differentiation (30 ng/ml EGF) medium was used for 14 days.

After showing the multipotent nature of urinary tract stem cells in the laboratory, Zhang and others took smooth muscle cells and urothelial cells made from urinary tract stem cells and transplanted them into mice with tissue scaffolds that had been made from decellularized pig intestine. The scaffolds only had extracellular molecules and not cells. After one month, the implanted cells had formed multi-layered, tissue-like structures.

USCs were infected with BMP9 or control GFP and were injected subcutaneously into nude mice. i) Bony masses were only observed in mice implanted with BMP-transduced USCs at week 4. ii) The harvested bony masses were subjected to microCT imaging revealing the isosurface (left) and density heat maps (right).
USCs were infected with BMP9 or control GFP and were
injected subcutaneously into nude mice. i) Bony masses were only observed in mice implanted with
BMP-transduced USCs at week 4. ii) The harvested bony masses were subjected to microCT imaging
revealing the isosurface (left) and density heat maps (right).

Urinary tract stem cells or as Zhang calls them, urine-derived stem cells or USCs, have many cell surface characteristics of mesenchymal stem cells from bone marrow, but they are also like pericytes, which are cells on the outside of small blood vessels. Zhang and others suspect that USCs come from the upper urinary tract, including the kidney. Patients who have had kidney transplants from male donors have USCs with a Y chromosome in them, which suggests that the kidney is a source or one of the sources of these cells.

Determination of USC source. Several clones of USCs (p3) were cultured and analyzed for expression of kidney-lineage marker. (a) FISH (left) and amelogenin gene PCR analysis (right) analysis of USCs isolated from urine obtained from a male donor-to-female recipient kidney transplant for presence of Y-chromosome (L: DNA ladder, M: male control, F: female control, A4: USC from male donor-to-female recipient urine sample, N: negative control).
Determination of USC source. Several clones of USCs (p3) were cultured and analyzed for
expression of kidney-lineage marker. (a) FISH (left) and amelogenin gene PCR analysis (right)
analysis of USCs isolated from urine obtained from a male donor-to-female recipient kidney transplant
for presence of Y-chromosome (L: DNA ladder, M: male control, F: female control, A4: USC from
male donor-to-female recipient urine sample, N: negative control).

Even more work needs to be done before we can truly become over-the-moon excited about these cells as a source of material for regenerative medicine, Zhang’s work is certainly an encouraging start.

See Shantaram Bharadwaj, et al., Multi-Potential Differentiation of Human Urine-Derived Stem Cells: Potential for Therapeutic Applications in Urology. Stem Cells 2013 DOI: 10.1002/stem.1424.

Long-Lasting Blood Vessels Regenerated from Reprogrammed Human Cells


Researchers from Massachusetts General Hospital (MGH) in Boston, MA have used human induced pluripotent stem cells to make vascular precursor cells to produce functional blood vessels that lasted as long as nine months.

Rakesh Jain, director of the Steele Laboratory for Tumor Biology at MGH and his team derived human induced pluripotent stem cells (iPSCs) from adult cells of two different groups of patients. One group of individuals were healthy and the second group had type 1 diabetes. Remember that iPSCs are derived from adult cells through the process of genetic engineering. By introducing specific genes into these adult cells, the adult cells are de-differentiated into an embryonic-like state. The embryonic-like cells can be cultured and grown into a cell line that can be differentiated into various cell types in the laboratory. These differentiated cells types can then be transplanted into laboratory animals for regenerative purposes.

“The discovery of ways to bring mature cells back to a ‘stem-like’ state that ca differentiate into many different types of tissue has brought enormous potential to the field of cell-based regenerative medicine, but the challenge of deriving functional cells from these iPSCs still remains,” said Rakesh. “our team has developed an efficient method to generate vascular precursor cells from human iPSCs and used them to create networks of engineered blood vessels in living mice.”

The ability to regenerate or repair blood vessels could be a coup for regenerative medicine. Cardiovascular disease, for example, continues to be the number one cause of death in the United States and other conditions caused by blood vessel damage (e.g., the vascular complications of diabetes) continue to cause a great deal of morbidity and mortality each year. Also, providing a blood supply to newly generated tissue remains one of the greatest barriers to building solid organs through tissue engineering.

Some studies have used iPSCs to build endothelial cells (the cells that line blood vessels), and connective tissue cells that provide structural support. These cells, unfortunately, tend to not produce long-lasting vessels once they are introduced into laboratory animals. A collaborator with Jain, Dai Fukumura, stated, “The biggest challenge we faced during the early phase of this project was establishing a reliable protocol to generate endothelial cell lines that produced great quantities or precursor cells that could generate durable blood vessels.”

Jain’s group adapted a protocol that was originally designed to derived endothelial cells from human embryonic stem cells. They isolated cells based on the presence of more than one cell surface protein that marked out vascular potential. Then they expanded this population of cells using a culture system developed with embryonic stem cells that had been differentiated into endothelial cells. Further experiments confirmed that only those iPSCs that expressed all three cell surface proteins on their surfaces had the potential to form blood vessels.

To test the capacity of those cells to generate blood vessels, they implanted them onto the surface of the brain of mice in combination with mesenchymal precursors that generate smooth muscles that surround blood vessels.

Within two weeks after transplantation, the implanted cells had formed entire networks of blood vessels with blood flowing through them that has also fused with the already existing blood vessels. These engineered blood vessels continued to function for as long as 280 days in the living animal. Implantation under the skin, however, was a different story. It took 5 times the number of cells to get them to form blood vessels and they were short-lived. This is similar to the results observed in other studies.

Because type 1 diabetes can ravage blood vessels, Jain’s team made iPSCs from patients with type 1 diabetes to determine if iPSCs from such patients would generate functional blood vessels. Similarly to the cells generated from healthy individuals, vascular precursors generated from type 1 diabetics were able to form long-lasting blood vessels. However, these same cell lines showed variability in their ability to form vascular precursors. The reason for this is uncertain.

Rekha Samuel, one of the lead authors of this paper, said “The potential applications of iPSC-generated blood vessels are broad – from repairing damaged vessels supplying the heart or brain to preventing the need to amputate limbs because of the vascular complications of diabetes. But first we need to deal with such challenges as the variability of iPSC lines and the long-term safety issues involved in the use of these cells, which are being addressed by researchers around the world. We need better ways of engineering the specific type of endothelial cell needed for specific organs and functions.”