Orthopedic Regeneration With a Combination of Stem Cells, Gene Therapy, and Tissue Engineering


A Duke University research team has combined synthetic scaffolding materials with gene delivery techniques to generate replacement cartilage precisely where it’s needed in the body.

The ingenious strategy utilized by this research project circumvents the need for large quantities of growth factors, which are expensive and difficult to apply after implantation. The Duke team led by Farshid Guilak, director of orthopedic research at Duke University Medical Center, used gene therapy to make stem cells that synthesize their own growth factors.

In brief, Guilak and his collaborators used genetically engineered viruses to transfer genes to stem cells embedded in a synthetic matrix. Upon infection, the stem cells grew and differentiated as needed, but the scaffolding provided the necessary structural cues for the stem cells to move to the proper configuration and form cartilage with the proper shape and biomechanical properties.

Guilak has devoted several years to developing biodegradable synthetic scaffolds that mimic the mechanical properties of cartilage. After testing many different scaffolds, he settled on a 3D woven poly(ε-caprolactone) scaffold, which is completely biodegradable and provides an excellent structural matrix for the synthesis of cartilage.  However, an additional challenge for engineering good cartilage is to coax stem cells embed themselves in the scaffold while differentiating into cartilage-making cells, known as chondrocytes, after the scaffold has been implanted into a living organism.

One widely used strategy is to treat the stem cells with growth factors to induce chrondrocyte formation and cartilage production. Such cartilage can be implanted after it has been grown in the laboratory. However, this approach has some inherent limitations.

Guilak explained that “a major limitation in engineering tissue replacements has been the difficulty in delivering growth factors to the stem cells once they are implanted in the body.” Guilak continued: “There’s a limited amount of growth factor that you can put into the scaffolding, and once it’s released, it’s all gone. We need a method for long-term delivery of growth factors, and that’s where the gene therapy comes in.”

To tackle this perennial problem, Guilak tapped a talented colleague of his, Charles Gersbach, an assistant professor of biomedical engineering, who happens to also be a gene therapy expert.

Gersbach looked at the tissue engineering problem in an entirely new way and suggested that if the mountain will not come to Mohammed (that is to say if the growth factors cannot be given to stem cells after implantation), then Mohammed should grow his own mountain (the stem cells should be genetically engineered to make their own growth factors). Unfortunately, the conventional gene therapy methods are too complex to be commercially feasible. Typically, stem cells are collected, infected with genetically modified viruses that introduces new genes into them, grown to large numbers, and applied to synthetic cartilage scaffolds and implanted into the patient. Sounds like a headache? That’s because it is.

Fortunately, Gersbach had a slick gene therapy trick up his lab coat sleeve: “There are a few challenges with that process, one of them being that there are way too many extra steps,” said Gersbach. “So we turned to a technique I had previously developed that affixes the viruses that deliver the new genes onto a material’s surface.”

A microscopic view using electron microscopy of human stem cells and viral gene carriers adhering to the fibers of a polymer scaffold.  Photo source:  http://www.pratt.duke.edu/news/gene-therapy-might-grow-replacement-tissue-inside-body.
A microscopic view using electron microscopy of human stem cells and viral gene carriers adhering to the fibers of a polymer scaffold. Photo source: http://www.pratt.duke.edu/news/gene-therapy-might-grow-replacement-tissue-inside-body.

This new study combines Gersbach’s gene therapy technique—dubbed biomaterial-mediated gene delivery—to induce those human mesenchymal stem cells embedded in Guilak’s synthetic cartilage scaffolding to produce growth factor proteins (in particular a molecule called transforming growth factor β3  or TGF-β3). Based on the results of their experiments, the technique works and that the resulting synthetic, composite cartilage-like material is at least as good biochemically and biomechanically as if the growth factors were introduced in the laboratory.

“We want the new cartilage to form in and around the synthetic scaffold at a rate that can match or exceed the scaffold’s degradation,” said Jonathan Brunger, a graduate student who has spent time in both Guilak’s and Gersbach’s laboratories developing and testing the new technique. “So while the stem cells are making new tissue (in the body), the scaffold can withstand the load of the joint. In the ideal case, one would eventually end up with a viable cartilage tissue substitute replacing the synthetic material.”

This particular study examines cartilage regeneration, but Guilak and Gersbach hope that their technique could be applied to the regeneration of many different kinds of tissues, especially orthopaedic tissues such as tendons, ligaments and bones. Also, because the platform comes ready to use with any stem cell, it presents an important step toward commercialization.

“One of the advantages of our method is getting rid of the growth factor delivery, which is expensive and unstable, and replacing it with scaffolding functionalized with the viral gene carrier,” said Gersbach. “The virus-laden scaffolding could be mass-produced and just sitting in a clinic ready to go. We hope this gets us one step closer to a translatable product.”

Citation: “Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage.” Brunger, J.M., Huynh, N.P.T., Guenther, C.M., Perez-Pinera, P., Moutos, F.T., Sanchez-Adams, J., Gersbach C.A., and Guilak F. PNAS Plus, 2014. DOI: 10.1073/pnas.1321744111/-/DCSupplemental

Advertisements

Repopulation of Damaged Livers With Skin-Derived Stem Cells


Patients with severe liver disease must receive a liver transplant. This major procedure requires that the patient survives major surgery and then takes anti-rejection drugs for the rest of their lives. In general, liver transplant patients tend to fair pretty well. The one-year survival rate of liver transplant patients approaches 90% (see O’Mahony and Goss, Texas Heart Institute Journal 2012 39(6): 874-875).

A potentially better way to treat liver failure patients would be to take their own liver cells, convert them into induced pluripotent stem cells (iPSCs), differentiate them into liver cells, and use these liver cells to regenerate the patient’s liver. Such a treatment would contain a patient’s own liver cells and would not require anti-rejection drugs.

Induced pluripotent stem cells or iPSCs are made from genetically-engineered adult cells that have had four specific genes (Oct4, Klf4, Sox2, and c-Myc) introduced into them. As a result of the heightened expression of these genes, some of the adult cells dedifferentiate and are reprogrammed into cells that resemble embryonic stem cells. Normally, this procedure is relatively inefficient, slow, and induces new mutations into the engineered cells. Also, when iPSCs are differentiated into liver cells (hepatocytes), they do not adequately proliferate after differentiation, and they also fail to properly function the way adult hepatocytes do.

New work from laboratories at the University of California, San Francisco (UCSF), has differentiated human hepatocytes by means of a modified technique that bypasses the pluripotency stage. These cells were then used to repopulate mouse livers.

“I really like this paper. It’s a step forward in the field,” said Alejandro Soto-Gutiérrez, assistant professor of pathology at the University of Pittsburgh, who was not involved in the work. “The concept is reprogramming, but with a shortcut, which is really cool.”

Research teams led by Holger Willenbring and Sheng Ding isolated human skin cells called fibroblasts and infected them with engineered viruses that forced the expression of three genes: OCT4, SOX2, and KLF4. These transduced cells were grown in culture in the presence of proteins called growth factors and small molecules in order to induce reprogramming of the cells into the primary embryonic germ layer known as endoderm. In the embryo, the endoderm is the inner-most layer of cells that forms the gastrointestinal tract and its associated structures (liver, pancreas, and so on). Therefore, the differentiation of adult cells into endodermal progenitor cells provides a handy way to form a cell type that readily divides and can differentiate into liver cells.

“We divert the cells on their path to pluripotency,” explained coauthor Holger Willenbring, associate professor of surgery at UCSF. “We still take advantage of what is intrinsic to reprogramming, that the cells are becoming very plastic; they’ve become flexible in what kind of cell type they can be directed towards.”

The authors called these cells induced multipotent progenitor cells (iMPCs). The iMPCs were easily differentiated into endodermal progenitor cells (iMPC-EPCs). These iMPC-EPCs were grown in culture with a cocktail of small molecules and growth factors to increase iMPC-EPC colony size while concomitantly maintain them in an endodermal state. Afterwards, Willenbring and others cultured these cells with factors and small molecules known to promote liver cell differentiation. When these iMPC-Hepatocytes (Heps) were transplanted into mice with damaged livers, the iMPC-Hep cells continued to divide at least nine months after transplantation. Furthermore, the transplanted cells matured and displayed gene expression profiles very similar to that of typical adult hepatocytes. Transplantation of iMPC-Heps also improved the survival of a mouse model of chronic liver failure about as well as did transplantation of adult hepatocytes.

“It is a breakthrough for us because it’s the first time that we’ve seen a cell that can actually repopulate a mouse’s liver,” said Willenbring. Willenbring strongly suspects that iMPCs are better able to repopulate the liver because the derivation of iMPC—rather than an iPSC—eliminates some steps along the path to generating hepatocytes. These iMPCs also possess the ability to proliferate in culture to generate sufficient quantities of cells for therapeutic purposes and, additionally, can functionally mature while retaining that proliferative ability to proliferate. Both of these features are important prerequisites for therapeutic applications, according to Willenbring.

Before this technique can enter clinical trials, more work must be done. For example: “The key to all of this is trying to generate cells that are identical to adult liver cells,” said Stephen Duncan, a professor of cell biology at Medical College of Wisconsin, who was not involved in the study. “You really need these cells to take on all of the functions of a normal liver cell.” Duncan explained that liver cells taken directly from a human adult might be able to repopulate the liver in this same mouse model at levels close to 90 percent.

Willenbring and his colleagues observed repopulation levels of 2 percent by iMPC-Heps, which is substantially better than the 0.05 percent repopulation typically accomplished by hepatocytes derived from iPSCs or embryonic stem cells. However: “As good as this is, the field will need greater levels of expansion,” said Ken Zaret of the Institute for Regenerative Medicine at the University of Pennsylvania, who did not participate in the work. “But the question is: What is limiting the proliferative capacity of the cells?”

Zaret explained that it is not yet clear whether some aspect of how the cells were programmed that differed from how they normally develop could have an impact on how well the population expands after transplantation. “There still is a ways to go [sic],” he said, “but [the authors] were able to show much better long-term repopulation with human cells in the mouse model than other groups have.”

See S. Zhu et al., “Mouse liver repopulation with hepatocytes generated from human fibroblasts,” Nature, doi:10.1038/nature13020, 2014.

Human Stem Cell Gene Therapy Appears Safe and Effective


Two recent studies in the journal Science have reported the outcome of virally-mediated gene correction in hematopoietic stem cells (HSCs) to treat human patients. These studies may usher in a new era of safe and effective gene therapy. These exciting new clinical findings both come from the laboratory of Luigi Naldini at the San Raffaele Scientific Institute, Milan, Italy. The first experiment examined the treatment of metachromatic leukodystrophy (MLD), which is caused by mutations in the arylsulfatase A (ARSA) gene, and the second, investigated treatments for Wiskott-Aldrich syndrome (WAS), which is caused by mutations in the gene that encodes WASP.

MLD is one of several diseases that affects the lysosome; a structure in cells that acts as the garbage disposal of the cell. So called “lysosomal storage diseases” result from the inability of cells to degrade molecules that come to the lysosome for degradation. Without the ability to degrade these molecules, they build up to toxic levels and produce progressive motor and cognitive impairment and death within a few years of the onset of symptoms.

To treat MLD, workers in Naldini’s laboratory isolated blood-making stem cells from the bone marrow of three pre-symptomatic MLD patients (MLD01, 02 and 03). These stem cells were infected with genetically engineered viruses that encoded the human ARSA gene. After expanding these stem cells in culture, they were re-introduced into the MLD patients after those same patients had their resident bone marrow wiped out. The expression of the ARSA gene in the reconstituted bone marrow was greater than 10 fold the levels measured in healthy controls and there were no signs of blood cancers or other maladies. One month after the transplant, the implanted cells showed very high-level and stable engraftment. Between 45%-80% of cells isolated and grown from bone marrow samples harbored the fixed ARSA gene. AS expected, the levels of the ARSA protein rose to above-normal levels in therapeutically relevant blood cells and above normal levels of ARSA protein were isolated from hematopoietic cells after one month and cerebrospinal fluid (CSF) one to two years after transfusion. This is remarkable when you consider that one year before, no ARSA was seen. This shows that the implanted cells and their progeny properly homed to the right places in the body. The patient evaluations at time points beyond the expected age of disease onset was even more exciting, since these treat patients showed normal, continuous motor and cognitive development compared to their siblings who had MLD, but were untreated. The sibling of the patient designated “MLD01” was wheelchair-bound and unable to support their head and trunk at 39 months, but excitingly, after treatment, patient MLD01 was able to stand, walk and run at 39 months of age and showed signs of continuous motor and cognitive development. Lastly, and perhaps most importantly, there was no evidence of implanted cells becoming cancerous, even though they underwent self-renewal, like all good stem cells. This is the first report of an MLD patient at 39 months displaying such positive clinical features.

The second study treated WAS, which is an inherited disease that affects the immune system and leads to infections, abnormal platelets, scaly skin (eczema), blood tumors, and autoimmunity. In this second study, blood-making stem cells were collected from three patients infected with genetically engineered viruses that expressed the WASP gene. These stem cells were then reinfused intravenously (~11 million cells ) three days after collection. Blood tests and bone marrow biopsies showed evidence of robust engraftment of gene-corrected cells in bone marrow and peripheral blood up to 30 months later. WASP expression increased with time in most blood cells. Although serious adverse infectious events occurred in two patients, overall clinical improvement resulted in reduced disease severities in all patients. None of the three patients demonstrated signs of blood cancers and the platelet counts rose, but, unfortunately, not to normal levels. Again, no evidence for adverse effects were observed.

Simply put, these authors have presented a strategy for ex vivo gene correction in HSCs for inherited disorders which works and appears safe in comparison to previous strategies. Long-term analyses will undoubtedly need to be intensely scrutinized, but this research surely represents a huge step forward in the safe treatment of these and similar genetic disorders.

Stem Cell-Based Gene Therapy Restores Normal Skin Function


Michele De Luca from the University of Modena, Italy and his collaborator Reggio Emilia have used a stem cell-based gene therapy to treat an inherited skin disorder.

Epidermolysis bullosa is a painful skin disorder that causes the skin to be very fragile and blister easily. These blisters can lead to life-threatening infections. Unfortunately, no cure exists for this condition and most treatments try to alleviate the symptoms and infections.

Stem cell-based therapy seems to be one of the best ways to treat this disease, there are no clinical studies that have examined the long-term outcomes of such a treatment.

However, De Luca and his colleagues have examined a particular patients with epidermolysis bullosa who was treated with a stem cell-based gene therapy nearly seven years ago as part of a clinical trial.

The treatment of this patient has established that transplantation of a small quantity of stem cells into the skin on this patient’s legs restored normal skin function without causing any adverse side effects.

“These findings pave the way for the future safe use of epidermal stem cells for combined cell and gene therapy of epidermolysis bullosa and other genetic skin diseases,” said Michele De Luca.

De Luca and his research team found that their treatment of their patient, named Claudio, caused the skin covering his upper legs to looker normal and show no signs of blisters. To treat Claudio, De Luca and his colleague extracted skin cells from Claudio’s palm, used genetic engineering techniques to correct the genetic defect in the cells, and then transplanted these cells back into the skin of his upper legs. This was part of a clinical trial conducted at the University of Modena.

Claudio’s legs also showed no signs of tumors and the small number of transplanted cells sufficiently repaired Claudio’s skin long-term. Keep in mind that Claudio’s skin cells had undergone approximately 80 cycles of cell division and still had many of the features of palm skin cells, they show proper elasticity and strength and did not blister.

“This finding suggests that adult stem cell primarily regenerate the tissue in which they normally reside, with little plasticity to regenerate other tissues,” De Luca said. “This calls into question the supposed plasticity of adult stem cells and highlights the need to carefully chose the right type of stem cell for therapeutic tissue regeneration.”

I think De Luca slightly overstates his case here. Certainly choosing the right stem cells is crucial for successful stem cell treatments, but to take stem cells from skin, which are dedicated to making skin and expect them to form other tissues is unreasonable. However, several experiments have shown that stem cells from hair follicles and form neural tissues and several other cell types as well (see Jaks V, Kasper M, Toftgård R. The hair follicle-a stem cell zoo. Exp Cell Res. 2010 May 1;316(8):1422-8).

Adult stem cells have limited plasticity to be sure, but their plasticity is far greater than originally thought and a wealth of experiments have established that.

Despite these quibbles, this is a remarkable experiment that illustrates the feasibility and safety of such a treatment.  A larger problem is that large quantities of cells will be required to treat a person.  It is doubtful that small skin biopsies around the body can provide enough cells to treat the whole person.  Therefore, this might a case for induced pluripotent skin cells, which seriously complicates this treatment strategy.

Turning Stem Cells into Drug Factories


Wouldn’t it be nice to have cells that express the right molecules at the right place and the right time to augment or even initiate healing?

Researchers at the Brigham and Women’s Hospital and Harvard Stem Cell Institute have inserted modified messenger RNA to induce mesenchymal stem cells to produce adhesive proteins  (PSGL-1)and secrete interleukin-10, a molecule that suppresses inflammation. When injected into the bloodstream of mice, these modified stem cells home to the right location, stick to that site, and secrete interleukin-10 (IL-10) to suppress inflammation.

Improving MSC therapeutic potential viamRNA transfection with homing ligands and immunomodulatory factors. Illustration of (A) mRNA-engineered MSCs that express a combination of homing ligands (PSGL-1 and SLeX) and an immunomodulatory factor (IL-10), and (B) targeting mRNA-engineered MSCs to site of inflammation.
Improving MSC therapeutic potential viamRNA transfection with homing ligands and immunomodulatory factors. Illustration of (A) mRNA-engineered MSCs that express a combination of homing ligands (PSGL-1 and SLeX) and an immunomodulatory factor (IL-10), and (B) targeting mRNA-engineered MSCs to site of inflammation.

Jeffrey Karp, Harvard Stem Cell Institute principal faculty member and leader of this research, said this about this work: “If you think of a cell as a drug factory, what we’re doing is targeting cell-based, drug factories to damaged tissues, where the cells can produce drugs at high enough levels to have a therapeutic effect.”

Karp’s paper reports a proof-of-principle study has piqued the interest of several biotechnology companies, since it has the potential to target biological drug to disease sites. While ranked as the top sellers in the drug industry, biological drugs are still challenging to use. Karp’s approach might improve the clinical applications of biological drugs and improve the somewhat mixed results of clinical trials with mesenchymal stem cells.

Mesenchymal stem cells (MSCs) have emerged as one of the favorite sources for stem cell therapies. The attractiveness of MSCs largely lies with their availability, since they are found in bone marrow, fat, liver, muscle, and many other places. Secondly, MSCs can be grown in culture for a limited period of time without a great deal of difficulty. Third, MSCs tend to be ignored by the immune system when injected. For these reasons, MSCs have been used in many clinical trials, and they appear to be quite safe to use.

To genetically modify MSCs, Karp and his co-workers made chemically modified messenger RNAs (mRNAs) whose bases differed slightly from natural mRNAs. These chemical modifications did not affect the recognition of the mRNA by the protein synthesis machinery of the MSCs, but did affect the recognition of these mRNAs by those enzymes that degrade mRNAs. Therefore, these synthetic mRNAs are very long-lived and the transfected cells end up making the proteins encoded by these mRNAs for a very long time. RNA transfection does not modify the genome of the host cells, and this makes it a very safe procedure, since the engineered cells will express the desired protein for some time, but not indefinitely.

The mRNAs introduced into the cultured MSCs included mRNAs that encode the IL-10 protein, which is cytokine that suppresses inflammation, the PSGL-1 protein, a cell-surface protein that sticks to the P-and E-selectin receptors, and the Fut7 gene product.  FUT7 encodes an enzyme called fucosyltransferase 7, which adds a sugar called “fucose” to the PSGL-1 protein and without this sugar, PSGL-1 cannot bind to the selectins.  Selectins are stored by cells and during inflammation, they are sent to the cell surface where they can bind cells and keep them there to mediate inflammation.  By expressing PSGL-1 in the MSCs, Karp and his group hoped to that the engineered MSCs would bind to the surfaces of blood vessels and not be washed out.

e-selectin_binding

Oren Levy, lead author of this paper, said, “This opens the door to thinking of messenger RNA transfection of cell populations as next generation therapeutics in the clinic, as they get around some of the delivery challenges that have been encountered with biological agents.”

A problem that constantly troubles clinical trials that use MSCs is that they are rapidly cleared from the bloodstream within a few hours or days after they are introduced. The Harvard team showed that rapid targeting of MSCs to inflamed tissue produced a therapeutic effect despite rapid clearance of the MSCs.

Karp and his colleagues would like to extend the lifespan of these cells in the bloodstream and they are presently experimenting with new synthetic mRNAs that encode pro-survival factors.

“We’ve interested to explore the platform nature of this approach and see what potential limitations it may have or how far we can actually push it. Potentially we can simultaneously deliver proteins that have synergistic therapeutic impacts,” said Weian Zhao, another author of this paper.

Tissue Kallikrein-Modified Human EPCs Improve Cardiac Function


When cells are implanted into the heart after a heart attack, the vast majority of them succumb to the hostile environment in the heart and die. Twenty-four hours after implantation there is a significant loss of cells (see Wu et al Circulation 2003 108:1302-1305). That fact that implanted bone marrow or fat-based stem cells benefit the heart despite their evanescence is a remarkable testimony to their healing power.

To mitigate this problem, stem cell scientists have used a variety of different strategies to increase the heartiness and survival of implanted stem cells. Two main strategies have emerged: preconditioning cells and genetically engineering cells. Both strategies increase the survival of implanted stem cells (see here, and here).

When it comes to genetically engineering stem cells, Lee and Julie Chao from the Medical University of South Carolina in Charleston, South Carolina have used endothelial progenitor cells (EPCs) from human umbilical cord blood to treat mice that had suffered heart attacks, except that these cells were genetically engineered to express “Tissue Kallikrein” or TK. TK is encoded by a gene called KLKB1, which is on chromosome 4 at region q34-35 (in human genetics, the long arm of a chromosome is the “q” arm and the small arm is the “p” or petite arm). TK is initially synthesized as an inactive precursor called prekallikrein. Prekallikrein must be clipped in order to be activated and the proteases (proteases are protein enzymes that cut other proteins into smaller fragment) that do so are either clotting factor XII, which plays a role in blood clotting, and PRCP, which is also known as Lysosomal Pro-X carboxypeptidase.

TK is a protease that degrades a larger protein called kininogen in two smaller peptides called bradykinin and kallidin, both of which are active signaling molecules. Bradykinin and kallidin cause relaxation of smooth muscles, thus lowering blood pressure, TK can also degrade plasminogen to form the active enzyme plasmin.

So why engineer EPCs to express TK? As it turns out, TK activates an internal protein in cells called Akt, and activated Akt causes cells to survive and prevents them from dying (see Krankel et al., Circulation Research 2008 103:1335-1343; Yao YY, et al., Cardiovascular Research 2008 80: 354-364; Yin H et a., J Biological Chem 2005 280: 8022-8030).

The first experiments were test tube experiments in which TK EPCs were incubated with cultured heart muscle cells to determine their ability to prevent cell death. When cultured heart muscle cells were exposed to hydrogen peroxide, they died left and right, but when they were incubated with the TK-EPCs and hydrogen peroxide, far fewer of them died.

Upper panel consists of cells stained with a TUNEL stain, which designates those cells that are dead or dying.  The bottom panel are DAPI stained cells, which is a nuclear stain that marks all available cells dead or live. From left to right, normal cells, cell exposed to hydrogen peroxide, cells exposed to hydrogen peroxide plus the genes for TK, and finally, cells exposed to hydrogen peroxide and TK-EPCs.
Upper panel consists of cells stained with a TUNEL stain, which designates those cells that are dead or dying. The bottom panel are DAPI stained cells, which is a nuclear stain that marks all available cells dead or live.
From left to right, normal cells, cell exposed to hydrogen peroxide, cells exposed to hydrogen peroxide plus the genes for TK, and finally, cells exposed to hydrogen peroxide and TK-EPCs.

When these cells were exposed to low levels of oxygen, a similar result was observed, expect that the cells co-incubated with TK-EPCs showed significantly less cell death.

When TK-EPCs were injected into the infarct border zones of the heart just after they had heart attacks, the results seven days after the heart attacks were striking. The heart function of the control mice was lousy to say the least. The heart walls had thinned, their ejection fractions were in the tank (~23%) and their echocardiograms were far from normal. However, the TK-EPC-injected mice had a relatively normal echocardiogram, thick heart wall, pretty good ejection fractions (52% and oppose to the 76% of mice that had never had a heart attack), and good heart function in general. Also, the size of the infarcts was reduced in those animals whose hearts had been injected with TK-EPCs.

Representative Masson’s trichrome staining. Original magnification is 10. (f) Echocardiographic measurements for determination of LV function from M-mode measurements. (g) MDA in the ischemic mouse heart at day 7 after MI. Values are expressed as mean±s.e.m. (n¼6, *Po0.05 vs Ad.Null-hEPC- and medium-treated group; #Po0.05 vs medium-treated group).
Representative Masson’s trichrome staining. Original magnification is 10. (f) Echocardiographic measurements for determination of LV function from M-mode measurements. (g) MDA in the ischemic mouse heart at day 7 after MI. Values are expressed as mean±s.e.m. (n¼6, *Po0.05 vs Ad.Null-hEPC- and medium-treated group; #Po0.05 vs medium-treated group).

There were two other bonuses to using TK-EPCs. First, as expected, the density of new blood vessels was substantially higher in hearts that received injections of TK-EPCs. Secondly, the TK-EPCs definitely survived better than their non-genetically engineered counterparts.

Ex-vivo optical imaging study. (a, b) Representative NIR fluorescent images in explanted organs at days 2 or 7 following implantation of DiDlabeled hEPCs into the ischemic myocardium of nude mice. Bars represent maximum radiance. (a: 2 days after cell delivery; b: 7 days after cell delivery). (c) Quantitative analysis of NIR fluorescent signals in explanted hearts among each group at two time points. All values are expressed as mean±s.e.m. (n¼3–4, *Po0.01 vs control group).
Ex-vivo optical imaging study. (a, b) Representative NIR fluorescent images in explanted organs at days 2 or 7 following implantation of DiDlabeled hEPCs into the ischemic myocardium of nude mice. Bars represent maximum radiance. (a: 2 days after cell delivery; b: 7 days after cell delivery). (c) Quantitative analysis of NIR fluorescent signals in explanted hearts among each group at two time points. All values are expressed as mean±s.e.m. (n¼3–4, *Po0.01 vs control group).

These results also confirm that TK works in heart muscle cells by activating the Akt protein inside the cells.  This establishes that TK works through the Akt pathway.

Once again, we see that transplantation of stem cells after a heart attack can improve the function and structure of the heart after a heart attack.  Indeed this strategy seems to work again and again.  These experiments were done in mice and therefore, they must be successful in a larger animal, like a pig before they can be deemed efficacious and safe for use in human clinical trials.  Even so, these results are hopeful.

Stem Cell Gene Therapy for Sickle Cell Disease Moves Toward Clinical Trials


UCLA stem cell researchers and “gene jockeys” have successfully proven the efficacy of using genetically engineered hematopoietic (blood cell-making) stem cells from a patient’s own bone marrow to treat sickle-cell disease (SCD).

In a study led by Donald Kohn, professor of pediatrics and microbiology at the UCLA Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, an “anti-sickling” gene was introduced into the hematopoietic stem cells (HSCs) from patients with SCD. Because the HSCs divide continuously throughout the life of the individual, all the blood cells they make will possess the anti-sickling gene and will therefore no sickle. This breakthrough gene therapy technique is scheduled to begin clinical trials by early 2014.

SCD results from a specific mutation in the beta-globin gene. Beta-globin is one of the two proteins that makes the multisubunit protein hemoglobin. Hemoglobin is a four-subunit protein that ferries oxygen from the lungs to the tissues and carbon dioxide from the tissues to the lungs. It is tightly packed into each red blood cell.

The structure of hemoglobin, each subunit is in a different color.
The structure of hemoglobin, each subunit is in a different color.

Hemoglobin has a very high affinity for oxygen when oxygen concentrations are high, but a low affinity for oxygen when oxygen concentrations are low. Therefore, hemoglobin does a very good job of binding oxygen when it is in the lungs, where oxygen is plentiful, and a very good job of releasing oxygen in the tissues, where oxygen is not nearly as plentiful. This adaptive ability displayed by hemoglobin is the result of cooperativity between the four polypeptide chains that compose hemoglobin. Two of these polypeptide chains are alpha-globin proteins and the other two a beta globin proteins. Hemoglobin acts as though it is an alpha-beta dimer, or as though it is composed of two copies of an alpha-globin.beta-globin pair. The interactions between these polypeptide chains and the movement of the hemoglobin subunits relative to each other creates the biochemical properties of hemoglobin that are so remarkable.

A mutation in the beta-globin gene that substitutes a valine residue where there should be a glutamic acid residue (position number 6), creates a surface on the outside of the beta-globin subunit that does not like water, and when oxygen concentrations drops, the mutant hemoglobin molecule changes shape and this new water-hating surface becomes a site for protein polymerization.

Sickle cell hemoglobin

The mutant hemoglobin molecules for long, stiff chains that deform the red blood cells into a quarter moon-shaped structure that clogs capillaries.

Sickle cell RBCs

 

This new therapy seeks to correct the genetic mutation by inserting into the genome of the HSC that makes the abnormal red blood cells a gene for beta-globin that encodes a normal version of beta globin rather than a version of it that causes sickle-cell disease.  By introducing those engineered HSCs back into the bone marrow of the SCD patient, the engineered HSCs will make normal red blood cells that do not undergo sickling under conditions of low oxygen concentration.

Dr. Kohn noted that the results from his research group “demonstrate that our technique of lentiviral transduction is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globnin gene in human SCD bone marrow progenitor cells, which improved the physiologic parameters of the resulting red blood cells.” Dr. Kohn’s statement may lead the reader to believe that this was done in a human patient, but that is not the case.  All this work was done in culture and in laboratory animals.

Kohn and his co-workers showed that in laboratory experiments, genetically engineered HSCs from SCD patients produced new non-sickled blood cells at a rate that would effectively allow SCD patients to show significant clinical improvement.  These new red blood cells also survived longer than those made by the nonengineered SCD HSCs.  The in vitro success of this technique has convinced the US Food and Drug Administration to grant Kohn the right to conduct clinical trials in SCD patients by early next year.

SCD affects more than 90,000 patients in the US, but it most affects people of sub-saharan African descent.  As stated before, the mutation that causes SCD produces red blood cells that are stiff, long, and get stuck in the tiny blood vessels known as capillaries that feed organs.  SCD causes multi-organ dysfunction and failure and can lead to death.

Sickle_cell_01

Treatment of SCD include bone marrow transplants, but immunological rejection of such transplants remains a perennial problem.   The success rate of bone marrow transplants is low and it is typically restricted to those patients with very severe disease who are on the verge of dying.

If Kohn’s clinical trials are successful, this stem cell-based treatment will hopefully become the gold standard for treatment of patients with SCD.  One potential problem with this technique is the use of lentiviral vectors to introduce a new gene into the HSCs.  Because lentiviruses are retroviruses, they insert their DNA into the genome of the host cells.  Such insertions can produce mutations, and it will be incumbent on Kohn and his colleagues to carefully screen each transformed HSC line to ensure that the insertion is not problematic and that the transformed cells are not sick or potentially tumorous.  However, such a vector is necessary in order to ensure permanent residence of the newly-introduced gene.

Even with these caveats, Kohn’s SCD treatment should go forward, and we wish all the best to Dr. Kohn, his team, and to the patients treated in this trial.