The Amino Acid Valine Helps Maintain Hematopoietic Stem Cell Niches

Hematopoietic stem cells (HSCs) populate our bone marrow and divide throughout our lifetimes to provide the red and white blood cells we need to live. However, during normal, healthy times, only particular HSCs are hard at work dividing and making new blood cells. The remaining HSCs are maintained in a protective dormant state. However, in response to blood loss or physiological stress of some sort, dormant HSCs must wake from their “slumbers” and begin dividing to make the needed blood cells. Such conditions, it turns out, can cause HSCs to experience a good deal of damage to their genomes. A paper that was published in Nature last year by Walter Dagmar and colleagues (Vol 520: pp. 549) showed that repeatedly subjecting mice to conditions that required the activation of dormant HSCs (in this case they injected the mice with polyinosinic:polycytidylic acid or pI:pC to mimic a viral infection and induce a type I interferon response) resulted in the eventual collapse of the bone marrow’s ability to produce new blood cells. The awakened HSCs accumulated such large quantities of DNA damage, that they were no longer able to divide and produce viable progeny. How then can HSCs maintain the integrity of their genomes while still dividing and making new blood cells?

The answer to this question is not completely clear, but a new paper in the December 2 edition of Science magazine provides new insights into HSC physiology and function. This paper by Yuki Taya and others, working in the laboratories of Hiromitsu Nakauchi at the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University School of Medicine, and Satoshi Yamazaki from the University of Tokyo, has shown that amino acid metabolism plays a vital role in HSC maintenance. As it turns out, the amino acid concentrations in bone marrow are approximately 100-fold higher than the concentrations of these same amino acids in circulating blood. Taya and others reasoned that such high amino acid concentrations must exist for reasons other than protein synthesis. Therefore, they designed dietary regimens that depleted mice for specific amino acids. Sure enough, when mice were fed valine-depleted diets, the HSCs of those mice lost their ability to repopulate the bone marrow.


After only two weeks of valine depletion, several nooks and crannies of the bone marrow – so-called stem cell “niches” – were devoid of HSCs. The bone marrow of such mice was easily reconstituted with HSCs from donor mice without the need for radiation or chemical ablation treatments.

Taya and others found that vascular endothelial stromal cells in the bone marrow secrete valine and that this secreted valine (which, by the way, is a branched-chain amino acid) is integral for maintaining HSC niches.

The excitement surrounding this finding is plain, since using harsh chemicals or radiation to destroy the bone marrow (a procedure known as “myeloablation”) causes premature ageing, infertility, lousy overall health, and other rather unpleasant side effects. Therefore, finding a “kinder, gentler” way to reconstitute the bone marrow would certainly be welcomed by patients and their physicians. However, valine depletion, even though it does not affect sterility, did cause 50% of the mice to die once valine was restored to the diet. This is due to a phenomenon known as the “refeeding effect” which has also been observed in human patients. Such side effects could probably be prevented by gradually returning valine to the diet. Taya and others also showed that cultured human HSCs required valine and another branched-chain amino acid, leucine. Since both leucine and valine are metabolized to alpha-ketoglutatate, which is used as a substrate for DNA-modifying enzymes, these amino acids might exert their effects through epigenetic modifications to the genome.


More work is needed in this area, but the Taya paper is a welcomed finding to a vitally important field.

The Founder Cell Identity Does Not Affect iPS Cell Differentiation to Hematopoietic Stem Cell Fate

Induced pluripotent stem cells (iPSCs) have many of the characteristics of embryonic stem cells, but are made from mature cells by means of a process called cell reprogramming. To reprogram cells, particular genes are delivered into mature cells, which are then cultured until they h:ave the growth properties of pluripotent cells. Further tests are required to demonstrate that the growing cells actually are iPSCs, but once they pass these tests, these cells can be grown in culture indefinitely and, ideally, differentiated into just about any cell type in our bodies (caveat: some iPSC lines can only differentiate into particular cell lineages). Theoretically, any cell type can be reprogrammed into iPSCs, but work from many laboratories has demonstrated that the identity of the founder cell influences the type of cell into which it can be reprogrammed.

Founder cells can be easily acquired from a donor and come in one of four types: fibroblasts (in skin), keratinocytes (also from skin), peripheral and umbilical cord blood, and dental pulp cells (from baby teeth). A variety of laboratories from around the world have made iPSC lines from a gaggle of different founder cells. Because of the significant influence of founder cells for iPSC characteristics, the use of iPSCs for regenerative medicine and other medical applications requires that the desired iPSC line should be selected based on the founder cell type and the characteristics of the iPSC line.

However, the founder cell identity is not the only factor that affects the characteristics of derived iPSC lines. The methods by which the founder cells are reprogrammed can also profoundly contribute to the differentiation efficiency of iPSC lines. According to Yoshinori Yoshida, Associate Professor at the Center for iPSC Research and Application (CiRA) at Kyoto University, the most commonly used methods of cell reprogramming utilize retroviruses, episomal/plasmids, and Sendai viruses to move genes into cells.

The cells found in blood represent a diverse group of cells that includes red blood cells that carry oxygen, platelets that heal wounds, and white blood cells that fight off infection. All the cells in blood are made by bone marrow-specific stem cells called “hematopoietic stem cells.” The production of clinical grade blood has remained a kind of “holy grail” for cellular reprogramming studies. Some scientists have argued that in order to make good-quality hematopoietic cells, the best founder cells are hematopoietic cells. Is this true? Yoshida and his colleagues examined a very large number of iPSC lines that were made from different founder cells and with differing reprogramming methods.  The results of these experiments were published in the journal Cell Stem Cell (doi:10.1016/j.stem.2016.06.019).

Remarkably, Yoshida and his crew discovered that neither of these factors has a significant effect. What did have a significant effect were the expression of certain genes and the position of particular DNA methylations. These two factors were better indicators of the efficiency at which an iPSC line could differentiate into the hematopoietic stem cells.

“We found the IGF2 (Insulin-like Growth Factor-2) gene marks the beginning of reprogramming to hematopoietic cells”, said Dr. Masatoshi Nishizawa, a hematologist who works in Yoshida’s lab and is the first author of this new study. Higher expression of the IGF2 gene is indicative of iPSCs initiating differentiation into hematopoietic cells. Even though IGF2 itself is not directly related to hematopoiesis, its uptake corresponded to an increase in the expression of those genes involved in directing differentiation into hematopoietic stem cells.

Although IGF2 marked the beginnings of differentiation to hematopoietic lineage, the completion of differentiation was marked by the methylation profiles of the iPS cell DNA. “DNA methylation has an effect on a cell staying pluripotent or differentiating,” explained Yoshida. Completion of the final stages of differentiation was highly correlated with less aberrant methylation during the reprogramming process. Blood founder cells showed a much lesser tendency to display aberrant DNA methylation patterns than did other iPSC lines made from other founder cells. This probably explains why past experiments seemed to indicate that the founder cell contributes to the effectiveness of differentiating iPS cells to the hematopoietic stem cell lineage.

These findings reveal molecular factors that can be used to evaluate the differentiation potential of different iPSC lines, which should, hopefully, expedite the progression of iPSCs to clinical use. Nishizawa expects this work to provide the basis for evaluating iPSC lines for the preparation of other cell types. “I think each cell type will have its own special patterns,” he said.

Gamida Cell Announces First Patient with Sickle Cell Disease Transplanted in Phase 1/2 Study of CordIn™ as the Sole Graft Source

An Israeli regenerative therapy company called Gamida Cell specializes in cellular and immune therapies to treat cancer and rare (“orphan”) genetic diseases. Gamida Cell’s main product is called NiCord, which provides patients who need new blood-making stem cells in their bone marrow an alternative to a bone marrow transplant. NiCord is umbilical cord blood that has been expanded in culture. In clinical trials to date, NiCord has rapidly engrafted into patients and the clinical outcomes of NiCord transplantation seem to be comparable to transplantation of peripheral blood.

Gamida Cell’s two products, NiCord and CordIn, as well as some other products under development utilize the company’s proprietary NAM platform technology to expand umbilical cord cells. The NAM platform technology has the remarkable capacity to preserve and enhance the functionality of hematopoietic stem cells from umbilical cord blood. CordIn is an experimental therapy for those rare non-malignant diseases in which bone marrow transplantation is the only currently available cure.

Gamida Cell has recently announced that the first patient with sickle cell disease (SCD) has been transplanted with their CordIn product.  Mark Walters, MD, Director of the Blood and Marrow Transplantation (BMT) Program is the Principal Investigator of this clinical trial. The patient received their transplant at UCSF Benioff Children’s Hospital Oakland.

CordIn, as previously mentioned, is an experimental therapy for rare non-malignant diseases, including hemoglobinopathies such as Sickel Cell Disease and thalassemia, bone marrow failure syndromes such as aplastic anemia, genetic metabolic diseases and refractory autoimmune diseases. CordIn potentially addresses a presently unmet medical need.

“The successful enrollment and transplantation of our first SCD patient with CordIn as a single graft marks an important milestone in our clinical development program. We are eager to demonstrate the potential of CordIn as a transplantation solution to cure SCD and to broaden accessibility to patients with rare genetic diseases in need of bone marrow transplantation,” said Gamida Cell CEO Dr. Yael Margolin. “In the first Phase 1/2 study with SCD, the expanded graft was transplanted along with a non-manipulated umbilical cord blood unit in a double graft configuration. In the second phase 1/2 study we updated the protocol from our first Phase 1/2 study so that patients would be transplanted with CordIn as a standalone graft, which is expanded from one full umbilical cord blood unit and enriched with stem cells using the company’s proprietary NAM technology.”

Somewhere in the vicinity of 100,000 patients in the U.S suffer from SCD; and around 200,000 patients suffer from thalassemia, globally. The financial burden of treating these patients over their lifetime is estimated at $8-9M. Bone marrow transplantation is the only clinically established cure for SCD, but only a few hundred SCD patients have actually received a bone marrow transplant in the last ten years, since most patients were not successful in finding a suitable match. Unrelated cord blood could be available for most of the patients eligible for transplantation, but, unfortunately, the rate of successful engraftment of un-expanded cord blood in these patients is low. Therefore, cord blood is usually not considered for SCD patients. Without a transplant, these patients suffer from very high morbidity and low quality of life.

Eight patients with SCD were transplanted in the first Phase 1/2 study performed in a double graft configuration. This study is still ongoing. Preliminary data from the first study will be summarized and published later this year. A Phase 1/2 of CordIn for the treatment of patients with aplastic anemia will commence later this year.

Genetic Switch to Making More Blood-Making Stem Cells Found

A coalition of stem cell scientists, co-led in Canada by Dr. John Dick, Senior Scientist, Princess Margaret Cancer Centre, University Health Network (UHN) and Professor, Department of Molecular Genetics, University of Toronto, and in the Netherlands by Dr. Gerald de Haan, Scientific Co-Director, European Institute for the Biology of Ageing, University Medical Centre Groningen, the Netherlands, have uncovered a genetic switch that can potentially increase the supply of stem cells for cancer patients who need transplantation therapy to fight their disease.

Their findings were published in the journal Cell Stem Cell and constitute proof-of-concept experiments that may provide a viable new approach to making more stem cells from umbilical cord blood.

“Stem cells are rare in cord blood and often there are not enough present in a typical collection to be useful for human transplantation. The goal is to find ways to make more of them and enable more patients to make use of blood stem cell therapy,” says Dr. Dick. “Our discovery shows a method that could be harnessed over the long-term into a clinical therapy and we could take advantage of cord blood being collected in various public banks that are now growing across the country.”

Currently, all patients who require stem cell transplants must be matched to an adult donor. The donor and the recipient must share a common set of cell surface proteins called “human leukocyte antigens” HLAs. HLAs are found on the surfaces of all nucleated cells in our bodies and these proteins are encoded by a cluster of genes called the “Major Histocompatibility Complex,” (MHC) which is found on chromosome six.

Map of MHC

There are two main types of MHC genes: Class I and Class II.

MHC Functions

Class I MHC contains three genes (HLA-A, B, and C). The three proteins encoded by these genes, HLA-A, -B, & -C, are found on the surfaces of almost all cells in our bodies. The exceptions are red blood cells and platelets, which do not have nuclei. Class II MHC genes consist of HLA-DR, DQ, and DP, and the proteins encoded by these genes are exclusive found on the surfaces of immune cells called “antigen-presenting cells” (includes macrophages, dendritic cells and B cells). Antigen-presenting cells recognize foreign substances in our bodies, grab them and, if you will, hold them up for everyone to see. The cells that usually respond to antigen presentation are immune cells called “T-cells.” T-cells are equipped with an antigen receptor that only binds antigens when those antigens are complexed with HLA proteins.

If you are given cells from another person who is genetically distinct from you, the HLA proteins on the surfaces of those cells are recognized by antigen-presenting cells as foreign substances. The antigen-presenting cells will them present pieces of the foreign HLA proteins on their surfaces, and T-cells will be sensitized to those proteins. These T-cells will them attack and destroy any cells in your body that have those foreign HLA proteins. This is the basis of transplant rejection and is the main reason transplant patients must continue to take drugs that prevent their T-cells from recognizing foreign HLA proteins as foreign.

When it comes to bone marrow transplantations, patients can almost never find a donor whose HLA surface proteins match perfectly. However, if the HLA proteins of the donor are too different from those of the recipient, then the cells from the bone marrow transplant attack the recipient’s cells and destroy them. This is called “Graft versus Host Disease” (GVHD). The inability of leukemia and lymphoma and other patients to receive bone marrow transplants is the unavailability of matching bone marrow. Globally, many thousands of patients are unable to get stem cell transplants needed to combat blood cancers such as leukemia because there is no donor match.

“About 40,000 people receive stem cell transplants each year, but that represents only about one-third of the patients who require this therapy,” says Dr. Dick. “That’s why there is a big push in research to explore cord blood as a source because it is readily available and increases the opportunity to find tissue matches. The key is to expand stem cells from cord blood to make many more samples available to meet this need. And we’re making progress.”

Umbilical cord blood, however, is different from adult bone marrow. The cells in umbilical cord blood are more immature and not nearly as likely to generate GVHD. Therefore, less perfect HLA matches can be used to treat patients in need of a bone marrow transplant. Unfortunately, umbilical cord blood has the drawback of have far fewer stem cells than adult bone marrow. If the number of blood-making (hematopoietic) stem cells in umbilical cord blood can be increased, then umbilical cord blood would become even more useful from a clinical perspective.

There has been a good deal of research into expanding the number of stem cells present in cord blood, the Dick/de Haan teams took a different approach. When a stem cell divides it produces a large number of “progenitor cells” that retain key properties of being able to develop into every one of the 10 mature blood cell types. These progenitor cells, however, have lost the critical ability to self-renew.

Dick and his colleagues analyzed mouse and human models of blood development, and they discovered that a microRNA called miR-125a is a genetic switch that is on in stem cells and controls self-renewal, but gets turned off in the progenitor cells.

“Our work shows that if we artificially throw the switch on in those downstream cells, we can endow them with stemness and they basically become stem cells and can be maintained over the long-term,” says Dr. Dick.

In their paper, Dick and de Haan showed that forced expression of miR-125 increases the number of hematopoietic stem cells in a living animal. Also, miR-125 induces stem cell potential in murine and human progenitor cells, and represses, among others, targets of the MAP kinase signaling pathway, which is important in differentiation of cells away from the stem cell fate. Furthermore, since miR-125 function and targets are conserved in human and mouse, what works in mice might very well work in human patients.

graphical abstract CSC_v9

This is proof-of-concept paper – no human trials have been conducted to date, but these data may be the beginnings of making more stem cells from banked cord blood to cure a variety of blood-based conditions.

Here’s to hoping.

Hematopoietic Stem Cells Use a Simple Heirarchy

New papers in Science magazine and the journal Cell have addressed a long-standing question of how the descendants of hematopoietic stem cells in bone marrow make the various types of blood cells that course through our blood vessels and occupy our lymph nodes and lymphatic vessels.

Hematopoietic stem cells (HSCs) are partly dormant cells that self-renew and produce so-called “multipotent progenitors” or MPPs that have reduced ability to self-renew, but can differentiate into different blood cell lineages.

The classical model of how they do this goes like this: the MPPs lose their multipotency in a step-wise fashion, producing first, common myeloid progenitors (CMPs) that can form all the red and white blood cells except lymphocytes, or common lymphoid progenitors (CLPs) that can form lymphocytes (see the figure below as a reference). Once these MPPs form CMPs, for example, the CMP then forms either an MEP that can form either platelets or red blood cells, or a GMP. which can form either granulocytes or macrophages. The possibilities of the types of cells the CMP can form in whittled down in a step-by-step manner, until there is only one choice left. With each differentiation step, the cell loses its capacity to divide, until it becomes terminally differentiated and becomes platelet-forming megakarocyte, red blood cell, neutrophil, macrophage, dendritic cells, and so on.


These papers challenge this model by arguing that the CMP does not exist. Let me say that again – the CMP, a cell that has been identified several times in mouse and human bone marrow isolates, does not exist. When CMPs were identified from mouse and human none marrow extracts, they were isolated by means of flow cytometry, which is a very powerful technique, but relies on the assumption that the cell type you want to isolate is represented by the cell surface protein you have chosen to use for its isolation. Once the presumptive CMP was isolated, it could recapitulate the myeloid lineage when implanted into the bone marrow of laboratory animals and it could also produce all the myeloid cells in cell culture. Sounds convincing doesn’t it?

In a paper in Science magazine, Faiyaz Notta and colleagues from the University of Toronto beg to differ. By using a battery of antibodies to particular cell surface molecules, Notta and others identified 11 different cell types from umbilical cord blood, bone marrow, and human fetal liver that isolates that would have traditionally been called the CMP. It turns out that the original CMP isolate was a highly heterogeneous mixture of different cell types that were all descended from the HSC, but had different developmental potencies.

Notta and others used single-cell culture assays to determine what kinds of cells these different cell types would make. Almost 3000 single-cell cultures later, it was clear that the majority of the cultured cells were unipotent (could differentiate into only one cell type) rather than multipotent. In fact, the cell that makes platelets, the megakarocyte, seems to derive directly from the MPP, which jives with the identification of megakarocyte progenitors within the HSC compartment of bone marrow that make platelets “speedy quick” in response to stress (see R. Yamamoto et al., Cell 154, 1112 (2013); S. Haas, Cell Stem Cell 17, 422 (2015)).

Another paper in the journal Cell by Paul and others from the Weizmann Institute of Science, Rehovot, Israel examined over 2700 mouse CMPs and subjected these cells to gene expression analyses (so-called single-cell transriptome analysis). If the CMP is truly multipotent, then you would expect it to express genes associated with lots of different lineages, but that is not what Paul and others found. Instead, their examination of 3461 genes revealed 19 different progenitor subpopulations, and each of these was primed toward one of the seven myeloid cell fates. Once again, the presumptive CMPs looked very unipotent at the level of gene expression.

One particular subpopulation of cells had all the trappings of becoming a red blood cell and there was no indication that these cells expressed any of the megakarocyte-specific genes you would expect to find if MEPS truly existed. Once again, it looks as though unipotency is the main rule once the MPP commits to a particular cell lineage.

Thus, it looks as though either the CMP is a very short-lived state or that it does not exist in mouse and human bone marrow. Paul and others did show that cells that could differentiate into more than one cell type can appear when regulation is perturbed, which suggests that under pathological conditions, this system has a degree of plasticity that allows the body to compensate for losses of particular cell lineages.

A model of the changes in human My-Er-Mk differentiation that occur across developmental time points. Graphical depiction of My-Er-Mk cell differentiation that encompasses the predominant lineage potential of progenitor subsets; the standard model is shown for comparison. The redefined model proposes a developmental shift in the progenitor cell architecture from the fetus, where many stem and progenitor cell types are multipotent, to the adult, where the stem cell compartment is multipotent but the progenitors are unipotent. The grayed planes represent theoretical tiers of differentiation.
A model of the changes in human My-Er-Mk differentiation that occur across developmental time points.
Graphical depiction of My-Er-Mk cell differentiation that encompasses the predominant lineage potential of progenitor subsets; the standard model is shown for comparison. The redefined model proposes a developmental shift in the progenitor cell architecture from the fetus, where many stem and progenitor cell types are multipotent, to the adult, where the stem cell compartment is multipotent but the progenitors are unipotent. The grayed planes represent theoretical tiers of differentiation.

Fetal HSCs, however, are a bird of a different feather, since they divide quickly and reside in fetal liver.  Also, these HSCs seem to produce CMPs, which is more in line with the classical model.  Does the environmental difference or fetal liver and bone marrow make the difference?  In adult bone marrow, some HSCs nestle next to blood vessels where they encounter cells that hang around blood vessels known as “pericytes.”  These pericytes sport a host of cell surface molecules that affect the proliferative status of HSCs (e.g., nestin, NG2).  What about fetal liver?  That’s not so clear – until now.

In the same issue of Science magazine, Khan and others from the Albert Einstein College of Medicine in the Bronx, New York, report that fetal liver also has pericytes that express the same cell surface molecules as the ones in bone marrow, and the removal of these cells reduces the numbers of and proliferative status of fetal liver HSCs.

Now we have a conundrum, because the same cells in bone marrow do not drive HSC proliferation, but instead drive HSC quiescence.  What gives? Khan and others showed that the fetal liver pericytes are part of an expanding and constantly remodeling blood system in the liver and this growing, dynamic environment fosters a proliferative behavior in the fetal HSCs.

When umbilical inlet is closed at birth, the liver pericytes stop expressing Nestin and NG2, which drives the HSCs from the fetal liver to the other place were such molecules are found in abundance – the bone marrow.

These models give us a better view of the inner workings of HSC differentiation.  Since HSC transplantation is one of the mainstays of leukemia and lymphoma treatment, understanding HSC biology more perfectly will certainly yield clinical pay dirt in the future.


ASTIC Clinical Trial Fails to Show Clear Advantage to Hematopoietic Stem Cell Transplantation as a Treatment for Crohn’s Disease

Patients with Crohn’s disease (CD) sometimes suffer from daily bouts of stomach pain and diarrhea. These constant gastrointestinal episodes can prevent them from absorbing enough nutrition to meet their needs, and, consequently, they can suffer from weakness, fatigue, and a general failure to flourish.

To treat Crohn’s disease, physicians use several different types of drugs. First there are the anti-inflammatory drugs, which include oral 5-aminosalicylates such as sulfasalazine (Azulfidine), which contains sulfur, and mesalamine (Asacol, Delzicol, Pentasa, Lialda, Apriso). These drugs, have several side effects, but on the whole are rather well tolerated. If these don’t work, then corticosteroids such as prednisone are used. These have a large number of side effects, including a puffy face, excessive facial hair, night sweats, insomnia and hyperactivity. More-serious side effects include high blood pressure, diabetes, osteoporosis, bone fractures, cataracts, glaucoma and increased chance of infection.

If these don’t work, then the stronger immune system suppressors are brought out. These drugs have some very serious side effects. Azathioprine (Imuran) and mercaptopurine (Purinethol) are two of the most widely used of this group. If used long-term, these drugs can make the patient more susceptible to certain infections and cancers including lymphoma and skin cancer. They may also cause nausea and vomiting. Infliximab (Remicade), adalimumab (Humira) and certolizumab pegol (Cimzia) are the next line of immune system suppressors. These drugs are TNF inhibitors that neutralize an immune system protein known as tumor necrosis factor (TNF). These drugs are also associated with certain cancers, including lymphoma and skin cancers. The next line of drugs include Methotrexate (Rheumatrex), which is usually used to treat cancer, psoriasis and rheumatoid arthritis, but methotrexate also quells the symptoms of Crohn’s disease in patients who don’t respond well to other medications. Short-term side effects include nausea, fatigue and diarrhea, and rarely, it can cause potentially life-threatening pneumonia. Long-term use can lead to bone marrow suppression, scarring of the liver and sometimes to cancer. You will need to be followed closely for side effects.

Then there are specialty medicines for patients who do not respond to other medicines or who suffer from openings in their lower large intestines to the outside world (fistulae). These include cyclosporine (Gengraf, Neoral, Sandimmune) and tacrolimus (Astagraf XL, Hecoria). These have the potential for serious side effects, such as kidney and liver damage, seizures, and fatal infections. These medications are definitely cannot be used for long period of time as their side effects are too dangerous.

If the patient still does not experience any relief, then two humanized mouse monoclonal antibodies natalizumab (Tysabri) and vedolizumab (Entyvio). Both of these drugs bind to and inhibit particular cell adhesion molecules called integrins, and in doing so prevent particular immune cells from binding to the cells in the intestinal lining. Natalizumab is associated with a rare but serious risk of a brain disease that usually leads to death or severe disability called progressive multifocal leukoencephalopathy. In fact, so serious are the side effects of this medicine that patients who take this drug must be enrolled in a special restricted distribution program. The other drug, vedolizumab, works in the same way as natalizumab but does not seem to cause this brain disease. Finally, a drug called Ustekinumab (Stelara) is usually used to treat psoriasis. Studies have shown it’s useful in treating Crohn’s disease and might useful when other medical treatments fail. Ustekinumab can increase the risk of contracting tuberculosis and an increased risk of certain types of cancer. Also there is a risk of posterior reversible encephalopathy syndrome. More common side effects include upper respiratory infection, headache, and tiredness.

If this litany of side effects sounds undesirable, then maybe a cell-based treatment can help Crohn’s patients. To that end, a clinical trial called the Autologous Stem Cell Transplantation International Crohn’s Disease or ASTIC trial was conducted and its results were published in the December 15th, 2015 edition of the Journal of the American Medical Association.

The ASTIC trial enrolled 45 Crohn’s disease patients, all of whom underwent stem cell mobilization with cyclophosphamide and filgrastim, and were then randomly assigned to immediate stem cell transplantation (at 1 month) or delayed transplantation (at 13 months; control group).  Blood samples were drawn and mobilized stem cells were isolated from the blood.  In twenty-three of these patients, their bone marrow was partially wiped out and reconstituted by means of transplantations with their own bone marrow stem cells. The other 22 patients were given standard Crohn disease treatment (corticosteroids and so on) as needed.

The bad news is that hematopoietic stem cell transplantations (HSCT) were not significantly better than conventional therapy at inducing sustained disease remission, if we define remission as the patient not needing any medical therapies (i.e. drugs) for at least 3 months and no clear evidence of active disease on endoscopy and GI imaging at one year after the start of the trial. All patients in this study had moderately to severely active Crohn’s disease that was resistant to treatment, had failed at least 3 immunosuppressive drugs, and whose disease that was not amenable to surgery.  All participants in this study had impaired function and quality of life.  Also, the stem cell transplantation procedure, because it involved partially wiping out the bone marrow, cause considerable toxicities.

Two patients who underwent HSCT (8.7%) experienced sustained disease remission compared to one control patient (4.5%). Fourteen patients undergoing HSCT (61%) compared to five control patients (23%) had discontinued immunosuppressive or biologic agents or corticosteroids for at least 3 months. Eight patients (34.8%) who had HSCTs compared to two (9.1%) patients treated with standard care regimens were free of the signs of active disease on endoscopy and radiology at final assessment.

However, there were 76 serious adverse events in patients undergoing HSCT compared to 38 in controls, and one patient undergoing HSCT died.

So increased toxicities and not really a clear benefit to it; those are the downsides of the ASCTIC study.  An earlier report of the ASTIC trial in 2013, while data was still being collected and analyzed was much more sanguine.  Christopher Hawkey, MD, from the University of Nottingham in the United Kingdom said this: “Some of the case reports are so dramatic that it’s reasonable to talk about this being a cure in those patients.”  These words came from a presentation given by Dr. Hawkey at Digestive Disease Week 2013.  Further analysis, however, apparently, failed to show a clear benefit to HSCT for the patients in this study.  It is entirely possible that some patients in this study did experience significant healing, but statistically, there was no clear difference between HSCT and conventional treatment for the patients in this study.

The silver lining in this study, however, is that compared to the control group, significantly more HSCT patients were able to stop taking all their immunosuppressive therapies for the three months prior to the primary endpoint. That is a potential upside to this study, but it is unlikely for most patients that this upside is worth the heightened risk of severe side effects. An additional potential upside to this trial is that patients who underwent HSCT showed greater absolute reduction of clinical and endoscopic disease activity. Again, it is doubtful if these potential benefits are worth the higher risks for most patients although it might be worth it for some patients.

Therefore, when HSCT was compared with conventional therapy, there was no statistically significant improvement in sustained disease remission at 1 year. Furthermore, HSCT was associated with significant toxicity. Overall, despite some potential upside to HSCT observed in this study, the authors, I think rightly, conclude that their data do not support the widespread use of HSCT for patients with refractory Crohn’s disease.

Could HSCT help some Crohn’s patients more than others? That is a very good question that will need far more work with defined patient populations to answer.  Perhaps further work will ferret out the benefits HSCT has for some Crohn’s disease patients relative to others.

The ASTIC trial was a collaborative project between the European Society for Blood and Marrow Transplantation (EBMT) and the European Crohn’s and Colitis Organization (ECCO) and was funded by the Broad Medical Foundation and the Nottingham Digestive Diseases Centers.

Gamida Cell Phase 3 Study Design Outline Approved by FDA and EMA

Gamida Cell, a cell therapy company based in Jerusalem, Israel, has reached agreements with the US Food and Drug Administration (USFDA) and the European Medicines Agency (EMA) with regards to a Phase III study design outline for testing their NiCord product. NiCord is a blood cancer treatment derived from a single umbilical cord blood until expanded in culture and enriched with stem cells by means of the company’s proprietary NAM technology.

Gamida Cell is moving forward now with plans to commence an international, multi-center, Phase III study of NiCord in 2016. Phase I/II data of 15 patients are expected in the fourth quarter of 2015. NiCord is in development as an experimental treatment for various types of blood cancers including Acute Myeloid Leukemia (AML), Acute Lymphoblastic Leukemia (ALL), Myelodysplastic Syndrome (MDS), and Chronic Myelogenous Leukemia (CML).

NiCord® is derived from a single cord blood unit which has been expanded in culture and enriched with stem cells using Gamida Cell’s proprietary NAM technology. NAM technology proceeds from the observation that nicotinamide, a form of vitamin B3, inhibits the loss of functionality that usually occurs during the culture process of umbilical cord blood stem cells, when added to the culture medium. Pre-clinical studies have also shown that the expanded cell grafts manufactured using NAM technology demonstrate improved functionality following infusion in a living animal. These stem cells show improved movement, home to the bone marrow, and show higher rates of engraftment, or durable retention in the bone marrow. Based on these results, Gamida Cell is currently testing in clinical trials (in patients) cells expanded in culture with the NAM platform to determine their safety and effectiveness as a treatment for blood cancers, sickle-cell anemia and thalassemia. NiCord is intended to fill the crucial clinical need for a treatment for the vast majority of blood cancer patients indicated for bone marrow transplantation, with insufficient treatment options. This segment has a multi-billion dollar market potential.

“The FDA and EMA feedback is a major regulatory milestone for NiCord. NiCord is a life-saving therapy intended to provide a successful treatment for the large number of blood cancer patients who do not have a family related matched donor. Gamida Cell is dedicated to changing the paradigm in transplantation by bringing this therapy to market as soon as possible,” said Dr. Yael Margolin, president and CEO of Gamida Cell.

“The positive regulatory feedback confirms that Gamida Cell’s NiCord program is on a clear path to approval both in the U.S. and EU. We look forward to continuing the development of this very important product in cooperation with sites of excellence in cord blood transplantation worldwide,” said Dr. David Snyder, V.P. of Clinical Development and Regulatory Affairs at Gamida Cell.

The Phase III study will be a randomized, controlled study of approximately 120 patients. It will compare the outcomes of patients transplanted with NiCord to those of patients transplanted with un-manipulated umbilical cord blood.


Genetically Engineered Stem Cells to Treat Osteoporosis in Mice

Osteoporosis is a nasty condition characterized by weak and brittle bones often leading to devastating bone fractures and other injuries. Unfortunately, millions of people worldwide have been diagnosed with osteoporosis.


Contrary to popular belief, out bones are dynamic organs that undergo constant remodeling consisting of bone resorption and renewal. However, once bone resorption rates outpace bone renewal, bone densities decrease, which puts bones at risk of fractures. Medical researchers are would like to find new ways to not only discourage bone resorption, but generate new bone material to replace demineralized bone. Ideally, therapies would rejuvenate bone growth so that it the bone reverts back to its original density levels.

Now a promising strategy to accomplish this goal is relies on stem cell therapy. A collaborative study by Xiao-Bing Zhang and his colleagues from Loma Linda University and Jerry L. Pettis from the Memorial VA Medical Center has built on their prior work with genetically modified hematopoietic stem cells (HSCs) that identified a growth factor that caused a 45% increase in bone strength in mouse models. This work was published in the journal Proceedings of the National Academy of Sciences, USA.

Zhang and his coworkers wanted to find a gene therapy that promotes bone growth while minimizing side effects. To that end, Zhang’s group focused on a growth factor called PGDFB or “platelet-derived growth factor, subunit B.” The properties of this growth factor make it a promising candidate, since it is already FDA approved for treating bone defects in the jaw and mouth.

platelet-derived growth factor, subunit B
platelet-derived growth factor, subunit B

First, Zhang and others isolated HSCs from the bone marrow of donor mice. HSCs were chosen because they can be given intravenously, after which they will home in to one of the major sites of bone loss (the endosteal bone surface). The isolated HSCs were then genetically engineered to overexpress the growth factor PGDFB. Experimental mice were then irradiated to wipe out their own HSCs, and then these same mice were transplanted with the modified HSCs.

After four weeks, the upper leg bones of the mice (femur) were tested. Zhang and his colleagues found that PGDFB promoted new trabecular bone formation, but because the PGDFB was expressed at high levels, it negatively affected bone mineral density. Zhang and others then used weaker promoters to optimize the dosage of PGDFB expression in the HSCs. They discovered that the phosphoglycerate kinase promoter (PGK) worked well to mitigate the amount of PGDFB that is expressed in cells. When these HSCs were transplanted into irradiated mice, they observed increases in trabecular bone volume, thickness, and number as well as increases in connectivity density. Additionally, cortical bone volume increased by 20-30% while cortical porosity was reduced by 40%. Importantly, the lower dosage of PGDFB resulted in no observed decreases in bone mineral density due to osteomalacia or hyperparathyroidism.

These treated femurs and a control sample underwent three-point mechanical testing to test the integrity of the new bone. The PGK-PGDFB-treated femur displayed a 45% increase in maximum load-to-failure in the midshaft of the femur and a 46% increase in stiffness, indicating quality bone formation. Thus the new bone that is deposited it also of high quality.

The next step in this work would like to determine why this combination of a PGK promotor and PDGFB worked so well. Zhang and others have discovered that PDGFB promotes bone marrow mesenchymal stem cell formation and angiogenesis, which are two important factors in bone growth. They also found that optimizing the dosage of PDGFB is quite important for promoting osteoblast (bone-forming) cell formation.

Finally Zhang’s group investigated how osteoclastogenesis, or the creation of cells that reabsorb bone (osteoclasts) is affected by PDGFB with a PGK promotor. The treated femurs also had an increase in biomarkers for osteoclasts. This increase in both osteoblasts and osteoclasts indicates that the treated bones undergo the normal bone rebuilding and remodeling cycle.

Overall, this research provides a compelling investigational pathway for future cell therapies to treat osteoporosis. Mouse models show a fast-acting technique that result in bone formation and increasing bone strength.

A Genetic Recipe To Convert Stem Cells into Blood

University of Wisconsin at Madison Stem Cell researchers led by Igor Slukvin discovered two genetic programs that can convert pluripotent stem cells into the wide array of white and red blood cells found in human blood (pluripotent means “capable of developing into more than one organ or tissue and not fixed as to potential development).

This research has ferreted out the actual pathway used by the developing human body to make blood-based cells at the early stages of development.

During embryonic development, blood formation, which includes the formation of blood cells and blood vessels from the same progenitor cell; a cell called a hemangioblast. This begins in week three of development in the extraembryonic mesoderm or the primary embryonic umbilical sac, which is also known as the yolk sac. Also, the connecting stalk and chorion contain blood islands as well. These blood islands are rich in particular growth factors such as vascular endothelial growth factor (VEGF) and placental growth factor (PIGF). The blood islands form clusters with two cell populations; peripheral cells (angioblasts) that form the endothelial cells that form vessels. These networks of vessels extend and fuse together to form a robust a network. The cores of the blood islands (hemocytoblasts) form blood cells. Initially all vessels (arteries and veins) look the same. Blood formation occurs later in week 5, and occurs throughout the embryonic mesenchyme (connective tissue), and then moves to the liver, and then the spleen, and then bone marrow.

Embryonic red blood cells
Embryonic red blood cells

Hematopoietic stem cells (HSCs), the stem cells that form the blood cells, form from the wall of the aorta, which is the major blood vessel in the embryo. In the aortic wall, cells called hemogenic endothelial cells bud off progenitor cells that become HSCs.

A course of transcription factors have now been identified by Slukvin and his team as the triggers that switch these cells into HSCs. Two groups of transcriptional regulators can induce distinct developmental programs from pluripotent stem cells. The first developmental program, directed by the transcription factors ETV2 and ​GATA2, the pan-myeloid pathway, switches cells into the myeloid lineage (the myeloid lineage includes red blood cells, platelets, neutrophils, macrophages, basophils and eosinophils). The second developmental pathway, directed by the transcription factors GATA2 and ​TAL1, directs cells into the erythro-megakaryocytic pathway. In either cases, these transcription factors directly convert human pluripotent stem cells into an endothelium, which subsequently transform into blood cells with pan-myeloid or erythro-megakaryocytic potential.


In Slukvin’s laboratory, treatment of either ETV2 and ​GATA2 or GATA2 and ​TAL1 induced cells to make the complete range of human blood cells. Slukvin said of these experiments, “This is the first demonstration of the production of different kinds of cells from human pluripotent stem cells using transcription factors.” Transcription factors bind to DNA at specific sites and regulate gene expression.

Slukvin continued: “By overexpressing just two transcription factors, we can, in the laboratory dish, reproduce the sequence of events we see in the embryo.”

Slukvin and his co-workers showed that his technique produced blood cells by the millions. For every million stem cells, it was possible to produce 30 million blood cells.

Slukvin and his colleagues did not use viruses to genetically modify these stem cells. Instead they used modified RNA to induce overexpression of these transcription factors. Such a technique avoids genetic modification of cells and is inherently safer.

“You can do it without a virus, and genome integrity is not affected,” said Slukvin.  This technique might also work to differentiate pluripotent stem cells into other cell types, such as pancreatic beta cells, brain-specific cells, or liver cells.

Despite these successes, Slukvin says that the “Holy grail” of hematopoietic research is to differentiate pluripotent stem cells into HSCs.  Since HSC transplants are used to treat multiple myeloma and other types of blood-based cancers as well, making HSCs in the laboratory remains a significant goal and challenge as well.

“We still don’t know how to do that,” said Slukin, “but our new approach to making blood cells will give us an opportunity to model their development in a dish and identify novel hematopoietic stem cell factors.”

Mouse Blood Cells Reprogrammed into Blood Cell Stem Cells

Boston Children’s Hospital researchers have directly reprogrammed mature blood cells from mice into blood-forming hematopoietic stem cells by using a cocktail of eight different transcription factors.

These reprogrammed cells have been called induced hematopoietic stem stem cells or iHSCs. These cells have all the hallmarks of mature mouse HSCs and they have the capacity to self-renew and differentiate into all the blood cells that circulate throughout the body.

These findings are highly significant from a clinical perspective because they indicate that it might be entirely possible to directly reprogram a patient’s existing, mature blood cells into a hematopoietic stem cell for transplantation purposes. Such a procedure, known as hematopoietic stem cells transplantation or HSCT, is a common treatment for patients whose bone marrow has suffered irreparable damage due to environmental causes (heavy metals, chloramphenicol, etc) or disease (cancer). The problem with HSCT is finding a proper match for the patient and then procuring clinically significant quantities of high-quality bone marrow for HSCT.

Derrick J. Rossi, an investigator in the Program in Cellular and Molecular Medicine at Boston Children’s Hospital and Assistant Professor in the Department of Stem Cell & Regenerative Biology, explained: “HSCs comprise only about one in every 20,000 cells in the bone marrow. If we could generate autologous (a patient’s own) HSCs from other cells, it could be transformative for transplant medicine and for our ability to model diseases of blood development.”

Rossi and his collaborators have screened genes that are expressed in 40 different types of blood progenitor cells in mice. This screen identified 36 different genes that control the expression of the other genes. These 36 genes encode so-called “transcription factors,” which are proteins that bind to DNA and turn gene express on or shut it off.

Blood cell production tends to go from the stem cells to progeny cells called progenitor cells that can still divide to some limited extent, and to effector cells that are completely mature and, in most cases, do not divide (the exception is lymphocytes, which expand when activated by specific foreign substances called antigens).

Further work by Rossi and others identified six transcription factors (Hlf, Runx1t1, Pbx1, Lmo2, Zfp37, and Prdm5) of these 36 genes, plus two others that were not part of their original screen (N-Myc and Meis1) that could robustly reprogram myeloid progenitor cells or pro/pre B lymphocytes into iHSCs.


To put these genes into these blood cells, Rossi and others uses souped-up viruses that introduced all either genes under the control of sequences that only allowed expression of these eight genes in the presence of the antibiotic doxycycline. Once these transfected cells were transplanted into mice, the recipient mice were treated with doxycycline, and the implanted cells formed HSCs.

When this experiment utilized mice that were unable to make their own blood cells, because their bone marrow had been wiped out, the implanted iHSCs reconstituted the bone marrow and blood cells of the recipient mice.

To further show that this reconstituted bone marrow was normal, high-quality bone marrow, Rossi and others used these recipient mice as bone marrow donors for sibling mice whose bone marrow had been wiped out. This experiment showed that the mice that had received the iHSCs had bone marrow that completely reconstituted the bone marrow of their siblings. This established that the iHSCs could completely reestablish the bone marrow of another mouse.

Thus Rossi and others had established that iHSCs could in fact created HSCs from progenitor cells, but could they do the same thing with mature blood cells that were not progenitor cells? Make that another yes. When Rossi and others transfected their eight-gene cocktail into mature myeloid cells, these mature cells also made high-quality iHSCs.

Rossi noted that no one has been able to culture HSCs in the laboratory for long periods of time. A few laboratories have managed expand HSCs in culture, but only on a limited basis for short periods of time (see Aggarwal R1, Lu J, Pompili VJ, Das H. Curr Mol Med. 2012 Jan;12(1):34-49).  In these experiments, Rossi used his laboratory mice as living culture systems to expand his HSCs, which overcomes the problems associated with growing these fussy stem cells in culture.

Gene expression studies of his iHSCs established that, from a gene expression perspective, the iHSCs were remarkably similar to HSCs isolated from adult mice.

This is certainly an exciting advance in regenerative medicine, but it is far from being translated into the clinic.  Can human blood progenitor cells also be directly reprogrammed using the same cocktail?  Can mature myeloid cells be successfully reprogrammed?  Will some non-blood cell be a better starting cell for iHSC production in humans?  As you can see there are many questions that have to be satisfactorily answered before this procedure can come to the clinic.

Nevertheless, Rossi and his team has succeeded where others have failed and the results are remarkable.  HSCs can be generated and transplanted with the use of only a few genes.  This is certainly the start of what will hopefully be a fruitful regenerative clinical strategy.

On a personal note, my mother passed about almost a decade ago after a long battle with myelodysplastic syndrome, which is a pre-leukemic condition in which the bone marrow fails to make mature red blood cells.  Instead the bone marrow fills up with immature red blood cells and the patient has to survive on blood transfusions.

The reason for this condition almost certainly stems from defective HSCs that do not make normal progeny.  Therefore the possibility of using a patient’s own cells to make new HSCs that can repopulate the bone marrow is a joyful discovery for me to read about, even though it is some ways from the clinic at this point.

Human Stem Cell Gene Therapy Appears Safe and Effective

Two recent studies in the journal Science have reported the outcome of virally-mediated gene correction in hematopoietic stem cells (HSCs) to treat human patients. These studies may usher in a new era of safe and effective gene therapy. These exciting new clinical findings both come from the laboratory of Luigi Naldini at the San Raffaele Scientific Institute, Milan, Italy. The first experiment examined the treatment of metachromatic leukodystrophy (MLD), which is caused by mutations in the arylsulfatase A (ARSA) gene, and the second, investigated treatments for Wiskott-Aldrich syndrome (WAS), which is caused by mutations in the gene that encodes WASP.

MLD is one of several diseases that affects the lysosome; a structure in cells that acts as the garbage disposal of the cell. So called “lysosomal storage diseases” result from the inability of cells to degrade molecules that come to the lysosome for degradation. Without the ability to degrade these molecules, they build up to toxic levels and produce progressive motor and cognitive impairment and death within a few years of the onset of symptoms.

To treat MLD, workers in Naldini’s laboratory isolated blood-making stem cells from the bone marrow of three pre-symptomatic MLD patients (MLD01, 02 and 03). These stem cells were infected with genetically engineered viruses that encoded the human ARSA gene. After expanding these stem cells in culture, they were re-introduced into the MLD patients after those same patients had their resident bone marrow wiped out. The expression of the ARSA gene in the reconstituted bone marrow was greater than 10 fold the levels measured in healthy controls and there were no signs of blood cancers or other maladies. One month after the transplant, the implanted cells showed very high-level and stable engraftment. Between 45%-80% of cells isolated and grown from bone marrow samples harbored the fixed ARSA gene. AS expected, the levels of the ARSA protein rose to above-normal levels in therapeutically relevant blood cells and above normal levels of ARSA protein were isolated from hematopoietic cells after one month and cerebrospinal fluid (CSF) one to two years after transfusion. This is remarkable when you consider that one year before, no ARSA was seen. This shows that the implanted cells and their progeny properly homed to the right places in the body. The patient evaluations at time points beyond the expected age of disease onset was even more exciting, since these treat patients showed normal, continuous motor and cognitive development compared to their siblings who had MLD, but were untreated. The sibling of the patient designated “MLD01” was wheelchair-bound and unable to support their head and trunk at 39 months, but excitingly, after treatment, patient MLD01 was able to stand, walk and run at 39 months of age and showed signs of continuous motor and cognitive development. Lastly, and perhaps most importantly, there was no evidence of implanted cells becoming cancerous, even though they underwent self-renewal, like all good stem cells. This is the first report of an MLD patient at 39 months displaying such positive clinical features.

The second study treated WAS, which is an inherited disease that affects the immune system and leads to infections, abnormal platelets, scaly skin (eczema), blood tumors, and autoimmunity. In this second study, blood-making stem cells were collected from three patients infected with genetically engineered viruses that expressed the WASP gene. These stem cells were then reinfused intravenously (~11 million cells ) three days after collection. Blood tests and bone marrow biopsies showed evidence of robust engraftment of gene-corrected cells in bone marrow and peripheral blood up to 30 months later. WASP expression increased with time in most blood cells. Although serious adverse infectious events occurred in two patients, overall clinical improvement resulted in reduced disease severities in all patients. None of the three patients demonstrated signs of blood cancers and the platelet counts rose, but, unfortunately, not to normal levels. Again, no evidence for adverse effects were observed.

Simply put, these authors have presented a strategy for ex vivo gene correction in HSCs for inherited disorders which works and appears safe in comparison to previous strategies. Long-term analyses will undoubtedly need to be intensely scrutinized, but this research surely represents a huge step forward in the safe treatment of these and similar genetic disorders.

Stem-Cell Gene Therapy for Sickle Cell Disease

Donald Kohn, a professor of pediatrics and microbiology, immunology and molecular genetics in the UCLA College of Letters and Science, and his colleagues, have successfully established the means to cure sickle-cell disease. This strategy uses hematopoietic (blood-producing) stem cells from the bone marrow of patients with sickle-cell disease in order to treat the disease itself.

This approach provides a revolutionary alternative to current treatments, since it creates self-renewing, normal blood cells by inserting a gene that abrogates the sickling properties into hematopoietic stem cells. With this technique, there is no need to identify a matched donor, and therefore, patients avoid the risk of their bodies rejecting donor cells.

During the clinical trial, the anti-sickling hematopoietic stem cells will be transplanted back into patients’ bone marrow to increase the population of “corrected” cells that make red blood cells that don’t sickle. Kohn will hopefully begin enrolling patients in the trial within three months. The first subject will be enrolled and observed for safety for six months. The second subject will then be enrolled and observed for safety for three months. If evaluations show that no problems have arisen, the study will continue with two more subjects and another evaluation, until a total of six subjects have been enrolled.

Sickle cell disease, which affects more than 90,000 individuals in the U.S., is seen primarily in people of sub-Saharan African descent. It is caused by an inherited mutation in the beta-globin gene that transforms normal-shaped red blood cells, which are round and pliable, into rigid, sickle-shaped cells. Normal red blood cells are able to pass easily through the tiniest blood vessels (capillaries) and carry oxygen to organs like the lungs, liver and kidneys. However, sickled cells get stuck in the capillaries, depriving the organs of oxygen, which can lead to organ dysfunction and failure.

Current treatments include transplanting patients with hematopoietic stem cells from a donor. This is a potential cure for the disease, but due to the serious risks of rejection, only a small number of patients have undergone this procedure, and it is usually restricted to children with severe symptoms.

“Patients with sickle-cell disease have had few therapeutic options,” Kohn said. “With this award, we will initiate a clinical trial that we hope will become a treatment for patients with this devastating disease.”

Finding for this work comes from new grants to researchers at UCLA’s Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, which total nearly $21 million.  These grants were announced Dec. 12 at a meeting of the California Institute of Regenerative Medicine (CIRM) Citizen’s Oversight Committee.  They are apart of the state agency’s Disease Team Therapy Development III initiative.

Stem Cells from Bone Marrow Help Heal Hard-to-Heal Bone Fractures

A new study that has appeared in the journal STEM CELLS Translational Medicine demonstrates the potential of a subset of stem cells called CD34+ in treating stubborn bone fractures that prove hard to heal.

The body has mechanisms for the repair of broken bones. Consequently, most patients recover from broken bones with little or no complication. However, up to 10 percent of all fracture patients experience fractures that refuse to heal. Such heard to heal fractures can lead to several debilitating side effects that include infection and bone loss, and the healing of hard to heal fractures often requires extensive treatment that includes multiple operations and prolonged hospitalization as well as long-term disability.

Regenerating broken bones with stem cells could offer an answer to this medical conundrum. Adult human peripheral blood CD34+ cells have been shown to contain a robust population of endothelial progenitor cells (EPCs) and hematopoietic stem cells, which give rise to all types of blood cells. These two types of stem cells might be good candidates for this therapy.

However, while other types of stem cells have been tested for their bone regeneration potential, the ability of CD34+ stem cells to facilitate bone healing has not been examined; that is until now. A phase I/II clinical study that evaluated the capacity of CD34+ to stimulate bone regeneration was published in the current edition of STEM CELLS Translational Medicine. This study was conducted by researchers at Kobe University Graduate School of Medicine, led by Tomoyuki Matsumoto, M.D., and Ryosuke Kuroda, M.D., members of the university’s department of orthopedic surgery and its Institute of Biomedical Research and Innovation (IBRI).

Matsumoto’s and Kuroda’s study was designed to evaluate the safety, feasibility and efficacy of autologous and G-CSF-mobilized CD34+cells in patients with non-healing leg bone breaks that had not healed in nine months. Seven patients were treated with CD34+ stem cells after receiving bone grafts.

In case you were wondering, G-CSF is a drug that releases stem cells from the bone marrow into the blood. It is given by injection or intravenously, and works rather well to mobilize bone marrow stem cells into the peripheral circulation.  It has clinical uses for patients recovering from chemotherapy.  Filgrastim (Neupogen) and PEG-filgrastim (Neulasta) are two commercially-available forms of recombinant G-CSF.

“Bone union was successfully achieved in every case, confirmed as early as 16.4 weeks on average after treatment,” Dr. Kuroda said.

Dr. Matsumoto added, “Neither deaths nor life-threatening adverse events were observed during the one year follow-up after the cell therapy. These results suggest feasibility, safety and potential effectiveness of CD34+ cell therapy in patients with nonunion.”

Atsuhiko Kawamoto, MD, Ph.D., a collaborator in IBRI, said, “Our team has been conducting translational research of CD34+ cell-based vascular regeneration therapy mainly in cardiovascular diseases. This promising outcome in bone fracture opens a new gate of the bone marrow-derived stem cell application to other fields of medicine.”

Although the study documents a relatively small number of patients, the results suggest the feasibility, safety and potential effectiveness of CD34+ cell therapy in patients with non-healing breaks,” said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.

Stem Cell Treatments to Improve Blood Flow in Angina Patients

Angina pectoris is defined as chest pain or discomfort that results from poor blood flow through the blood vessels in the heart and is usually activated by activity or stress.

In Los Angeles, California, physicians have initiated a double-blind, multicenter Phase III clinical trial that uses a patient’s own blood-derived stem cells to restore circulation to the heart of angina patients.

This procedure utilizes state-of-the-art imaging technology to map the heart and generate a three-dimensional image of the heart. These sophisticated images will guide the physicians as they inject stem cells into targeted sites in the heart.

This is a double-blinded study, which means that neither the patients nor the researcher will know who is receiving stem-cell injections and who is receiving the placebo.

The institution at which this study is being conducted, University of Los Angeles (UCLA), is attempting to establish evidence for a stem cell treatment that might be approved by the US Food and Drug Administration for patients with refractory angina. The subjects in this study had received the standard types of care but did not receive relief. Therefore by enrolling in this trial, these patients had nothing to lose.

Dr. Ali Nasir, assistant professor of cardiology at the David Geffen School of Medicine and co-principal investigator of this study, said: “We’re hoping to offer patients who have no other options a treatment that will alleviate their severe chest pain and improve their quality of life.”

Before injecting the stem cells or the placebo, the team examined the three-dimensional image of the heart and ascertained the health of the heart muscle and voltage it generated. Damaged areas of the heart fail to produce adequate quantities of voltage and show low levels of energy.

Jonathan Tobis, clinical professor of cardiology and director of interventional cardiology research at Geffen School of Medicine, said: “We are able to tell by the voltage levels and motion which area of the [heart] muscle is scarred or abnormal and not getting enough blood and oxygen. We then targeted the injections to the areas just adjacent to the scarred and abnormal heart muscle to try to restore some of the blood flow.”

What did they inject? The UCLA team extracted bone marrow from the pelvic bones and isolated CD34+ cells. CD34 refers to a cell surface protein that is found on bone marrow stem cells and mediates the adhesion of bone marrow stem cells to the bone marrow matrix. It is found on the surfaces of hematopoietic stem cells, placental cells, a subset of mesenchymal stem cells, endothelial progenitor cells, and endothelial cells of blood vessels. These are not the only cells that express this cell surface protein, but it does list the important cells for our purposes. Once the CD34+ cells were isolated, the were injected into the heart through a catheter that was inserted into a vein in the groin.


The team hopes that these cells (a mixture of mesenchymal stem cells, hematopoietic stem cells, and endothelial progenitor cells) will stimulate the growth of new blood vessels (angiogenesis) in the heart, and improve blood flow and oxygen delivery to the heart muscle.

“We will be tracking patients to see how they’re doing,” said William Suh MD, assistant clinical professor of medicine in the division of cardiology at Geffen School of Medicine.

The goal of this study is to enroll 444 patients nation-wide, of which 222 will receive the stem cell treatment, 111 will receive the placebo, and 111 who will be given standard heart care.

The Mechanism Behind Blood Stem Cell Longevity

The blood stem cells that live in bone marrow divide and send their progeny down various pathways that ultimately produce red cells, white cells and platelets. These “daughter” cells must be produced at a rate of about one million cells per second in order to constantly replenish the body’s blood supply.

A nagging question is how these stem cells to persist for decades even though their progeny last for days, weeks or months before they need to be replaced. A study from the University of Pennsylvania has uncovered one of the mechanisms, and these cellular mechanisms allow these stem cells to keep dividing in perpetuity.

Dennis Discher and his colleagues in the Department of Chemical and Biomolecular Engineering in the School of Engineering and Applied Science found that a form of a protein called “myosin,” the motor protein that allow muscles to contract, helps bone marrow stem cells divide asymmetrically. This asymmetric cell division helps one cell remains a stem cell while the other cell becomes a daughter cell. Discher’s findings might provide new insights into blood cancers, such as leukemia, and eventually lead to ways of growing transfusable blood cells in a laboratory.

The participants in this study were members of the Discher laboratory, which include lead author Jae-Won Shin, Amnon Buxboim, Kyle R. Spinler, Joe Swift, Dave P. Dingal, Irena L. Ivanovska and Florian Rehfeldt. Discher collaborated with researchers at the Univ. de Strasbourg, Lawrence Berkeley National Laboratory and Univ. of California, San Francisco. This paper was published in Cell Stem Cell.

“Your blood cells are constantly getting worn out and replaced,” Discher said. “We want to understand how the stem cells responsible for making these cells can last for decades without being exhausted.”

Presently, scientists understand the near immortality of hematopoietic stem cells (HSCs) as a result of their asymmetric cell division, although how this asymmetric cell division enables stem cell longevity was unknown. To ferret out this mechanism, Discher and his coworkers analyzed all of the genes expressed in the stem cells and compared them with the genes expression in their more rapidly dividing progeny. Those proteins that only went to one side of the dividing cell might play a role in partitioning other key factors responsible for keeping one of the cells a stem cell and the other a progeny cell.

One of the proteins that showed a distinct expression pattern was the motor protein myosin II, which has two forms, myosin A and myosin B. Myosin II is the protein that enables the body’s muscles to contract, but in nonmuscle cells also it used during cell division. During the last phase of cell division, known as cytokinesis, myosin II helps cleave and close off the cell membranes as the cell splits apart.

“We found that the stem cell has both types of myosin,” Shin said, “whereas the final red and white blood cells only had the A form. We inferred that the B form was key to splitting the stem cells in an asymmetric way that kept the B form only in the stem cell.”

With these myosins as their top candidate, Discher and others labeled key proteins in dividing stem cells with different colors and put them under the microscope.

“We could see that the myosin IIB goes to one side of the dividing cell, which causes it to cleave differently,” Discher said. ”It’s like a tug of war, and the side with the B pulls harder and stays a stem cell.”

The researchers then performed in vivo tests using mice that had human stem cells injected into their bone marrow. By genetically inhibiting myosin IIB production, Shin and others saw the stem cells and their early progeny proliferating while the amount of downstream blood cells dropped.

“Because the stem cells were not able to divide asymmetrically, they just kept making more of themselves in the marrow at the expense of the differentiated cells,” Discher said.

HSC cell division mechanism

Discher and his team then used a drug that temporarily blocked both myosin A and myosin B. They observed that myosin inhibition increased the prevalence of non-dividing stem cells, blocking the more rapid division of progeny.

Discher believes that these findings could eventually help regrow blood stem cells after chemotherapy treatments for blood cancers or even grow blood products in the lab. Finding a drug that can temporarily shut down only the B form of myosin, while leaving the A form alone, would allow the stem cells to divide symmetrically and make more of themselves without preventing their progeny from dividing themselves.

“Nonetheless, the currently available drug that blocks both the A and B forms of myosin II could be useful in the clinic,” Shin said, “because donor bone marrow cultures can now easily be enriched for blood stem cells, and those are the cells of interest in transplants. Understanding the forces that stem cells use to divide can thus be exploited to better control these important cells.”

A Molecular Switch that Causes Stem Cell Aging

A study from the Cincinnati Children’s Hospital Medical Center, in collaboration with the University of Ulm in Germany has discovered a molecular switch that causes the aging of blood stem cells. This same work suggests a therapeutic strategy to delay stem cell aging.

Hematopoietic stem cells (HSCs) reside in the bone marrow and make all the red and white blood cells that populate the bloodstream. Proper HSC function is absolutely vital to the ongoing production of different types of blood cells that allow the immune system to fight infections and organs to receive adequate quantities of oxygen.

Hartmut Geiger from the Cincinnati Children’s Hospital Medical Center and the University of Ulm was the senior researcher on this project. Dr. Geiger said, “Although there is a large amount of data showing that blood stem cell function declines during aging, the molecular processes that cause this remain largely unknown. This prevents rational approaches to attenuate stem cell aging. This study puts us significantly closer to that goal through novel findings that show a distinct switch in a molecular pathway is very critical to the aging process.”

The pathway to which Dr. Geiger referred is the Wnt signaling pathway, which plays a foundational role in animal development, cell-cell communication, tissue generation, and is also involved in the pathology of various diseases.

Crystal structure of XWnt8
Crystal structure of XWnt8

Analysis of mouse models and cultured HSCs showed that under normal conditions, Wnt signaling in HSCs occurred through the so-called “canonical” Wnt signaling pathway. The canonical Wnt signaling pathway utilizes the typical components of Wnt signaling that were first identified in the fruit fly and then isolated and characterized in vertebrates (shown below).

Canonical Wnt signaling

However, Wnt proteins can also signaling through other, distinct signal transduction pathways, and these types of pathways are collectively known as “noncanonical” Wnt signaling pathway. In aging HSCs, a switch from canonical Wnt signaling to noncanonical Wnt signaling marked the onset of HSC aging.  See below for one example of non-canonical Wnt signaling.

Non-canonical Wnt signaling

To test this observation, Geiger’s group overexpressed Wnt5 in HSCs (a Wnt protein known to induced signaling through noncanonical Wnt signaling pathways), and immediately, the HSCs began to show the signs of aging.

One of the targets of Wnt5 signaling is a protein called Cdc42, which influences the cytoskeleton of cells.  Therefore, Geiger and his crew asked if Cdc42 was activated in those HSCs that overexpressed Wnt5.  The answer to this question was a clear “yes.”  Then they treated cultured HSCs with a molecule that inhibited Cdc42 activity.  This treatment reversed the aging process in HSCs.

To test their hypothesis in a living animal, Geiger and others removed a copy of the Wnt5 gene from HSCs in laboratory mice.  Mice that lacked functional Wnt5 protein in HSCs, showed rejuvenation of the aged HSCs.  Mice that lacked both copies of the Wnt5 gene showed a delayed aging process in their HSCs.

Even though this study has definitely made an important contribution to understanding HSC aging, more work is needed before a therapeutic strategy is in place.

A Link Between Stem Cells, Atherosclerosis, and Cholesterol

Researchers at the University of Buffalo have discovered that stem cells are involved in the inflammation that promotes atherosclerosis.

Atherosclerosis or hardening of the arteries occurs when fat, cholesterol, and other substances build up in the walls of arteries and form hard structures called plaques. With the passage of time, these plaques can grow and block the arteries, depriving tissues of oxygen and nutrition.

High serum cholesterol levels have been unequivocally linked to an increased risk of arteriosclerosis. However, the deposition of cholesterol and other molecules underneath the inner layer (intima) of arteries requires a phenomenon known as inflammation. Inflammation occurs in response to tissue damage and it involves the dilation of blood vessels, increased blood flow the damaged area, the recruitment of white blood cells to the area, and increased heart, volume, and pain at the area in question. Increased inflammation within blood vessels damages the intimal layer and allows the deposition of cholesterol and other molecules underneath it to form an atheroma or a plaque.

The stem cell link to atherosclerosis is that the bone marrow-based stem cells that make our blood cells (hematopoietic stem/progenitor cells or HSPCs) ramp up their production of white blood cells in response to increased serum cholesterol levels.

Thomas Cimato, assistant professor in the Department of Medicine in the UB School of Medicine and Biomedical Sciences, said of his publication, “Our research opens up a potential new approach to preventing heart attack and stroke, by focusing on interactions between cholesterol and the HSPCs. Cimto also suggested that these findings could lead to the development of a useful therapy in combination with statins, or a treatment in place of statins for those who cannot tolerate statins.

In Cimato’s study, high cholesterol levels were shown to cause increases in the levels of interleukin -17 (IL-17). IL-17 is a cytokine that recruits monocytes and neutrophils to the site of inflammation. IL-17 boosts levels of granulocyte colony stimulating factor (GCSF), which is a factor that induces the release of HSPCs from the bone marrow to the peripheral circulation.

Cimato also found that statin drugs reduce the number of HSPCs in circulation, but not all patients responded similarly to statins. “We’ve extrapolated to humans what other scientists previously found in mice about the interactions between LDL, cholesterol, and these HSPCs,” said Cimato.

In order to transport cholesterol through the bloodstream, cells must construct a vehicle into which the cholesterol is packaged. Cholesterol does not readily dissolve in water. Therefore, packaging cholesterol into lipoprotein particles allows for its transport around the cell. Cell use cholesterol to vary the fluidity of their membranes, and to synthesize steroid hormones. Once cholesterol is absorbed from the diet, the cells of the small intestine package cholesterol and fat into a particle known as a chylomicron.


Chylomicrons are released by the small intestinal cells and they travel to the liver. In the liver, chylomicrons are disassembled and the cholesterol is packaged into a particle known as a very-low density lipoprotein particle (VLDL). After its release and sojourning through the bloodstream, the VLDL looses some surface proteins and is depleted of its fat and becomes known as a low-density lipoprotein or LDL particle.  While these particles sojourn through the bloodstream, they release fat for tissues to use as an energy source.


LDL particles are gradually removed from circulation. If they build up to high concentrations, they can be taken up by a wandering white blood cell known as a macrophage. If these macrophages take up too much LDL, they can become a foam cell.  Foams cells can become lodged underneath the intimal layer of blood vessels when inflammation occurs inside blood vessels, and this is the cause of atherosclerosis.

Increased LDL levels in mice have been shown to stimulate the release of HSPCs from bone marrow and accelerate the differentiation of these cells into white blood cells (neutrophils and monocytes) that participate in inflammation.

Mice do not regulate their cholesterol levels in the same way humans do.  Cimato commented, “mice used for atherosclerosis studies have very low total cholesterol levels at baseline.  We feed then very high fat diets in order to study high cholesterol but it isn’t easy to interpret what the levels in mice will mean in humans and you don’t know if extrapolating to humans will be valid.”

Therefore, in order to properly model cholesterol regulation in their human subjects, Cimato had them take statins for a two-week period followed by one-month intervals when they were off the drugs.  “We modeled the mechanism of how LDL cholesterol affects stem cell mobilization in humans,” said Cimato.

The experiments showed that increased LDL levels tightly correlated with IL-17 levels.

IL-17 and cholesterol levels

Secondly, blood LDL levels also correlated with GCSF levels.

LDL levels and GCSF levels

Finally, increasing GCSF levels led to higher levels of circulating HSPCs.

CD34 cells and G-CSF levels

These circulating HSPCs increase the numbers of neutrophils, monocytes, and macrophages that are involved in the formation of plaque and atherosclerosis.

The next step is to determine if HSPCs, like LDL cholesterol levels are connected to stroke, cardiovascular disease and heart attacks.

New Drug Prevents Viral Infections in Stem Cell Transplant Patients

Because bone marrow transplant patients have had their bone marrows wiped out with radiation or rather severe drugs, their immune systems tend to be kaput until the transplanted bone marrow stem cells start making new immune cells to reconstitute the immune system. Consequently, bone marrow transplant patients can contract a whole host of truly diabolical diseases.

One disease that shows up with some frequency in bone marrow transplant patients is cytomegalovirus (CMV) infections. CMV can cause pneumonia, diarrhea, digestive tract ulcers, and other problems. Some antiviral drugs do exist (ganciclovir, or its prodrug valganciclovir, foscarnet, and cidofovir), but they can cause kidney dysfunction or bone marrow suppression. Neither of these are desirable side effects. Clearly new drugs are needed (see Ahmed, A. Infect Disord Drug Targets. 2011 Oct;11(5):475-503).

A new clinical trial by researchers at Dana-Farber Cancer Institute and Brigham and Women’s Hospital has tested a drug called CMX001. When bone marrow transplant patients took it shortly after transplant, they were much less likely to contract CMV infections that those who did not take the drug.

The study’s lead author, Francisco Marty from Dana-Farber and Brigham and Women’s said: “With current agents, between 3 and 5 percent of allogeneic transplant patients develop CMV disease within six months of transplantation, and a small number of them die of it. There is clearly a need for better treatments with fewer adverse effects. This clinical trial examined whether the disease can be prevented, rather than waiting for blood tests to show that treatment is needed.”

By the time we become adults, most of use have been infected by CMV. However in most cases our immune systems hold it in check. In stem cell transplant patients, however, the immune system is replaced with those of a donor after receiving sizable doses of chemotherapy. During this period, long-dormant viruses, such as CMV, can reactivate and cause CMV disease. CMV is a type of herpes virus. Herpes viruses do a very good job of keeping a low profile and hiding in various types of cells. Only by treating with an effective anti-viral drug can CMV disease be thwarted.

In this Phase 2 clinical trial, 230 stem cell transplant recipients at 27 different centers across the United States were randomly assigned to either the oral CMX001 group to the placebo group. All patients took the drugs or placebos after their bone marrow transplant procedure and the drugs or placebos were taken for 9-11 weeks.

Those patients that took 100 milligrams of CMX001 twice a week, 10% had a CMV event in which CMV was detectable in the blood and the symptoms of CMV disease appeared. However, 37% of those patients who took the placebo had a CMV event. The most common side effect was diarrhea, which is no surprise given the fragile state of these patients.

“The results show the effectiveness of CMX001 in preventing CMV infections in this group of patients,” said Marty. “Because CMX001 is known to be active against other herpes viruses and against adenoviruses that sometimes affect transplant patients, it may be useful as a preventative or treatmentagent for those infections as well.”

See New England Journal of Medicine, 2013; 369(13): 1227.

Increasing Engraftment Rates of Umbilical Cord Blood Transplantations

Harvard Stem Cell Institute (HSCI) researchers have published initial results of a Phase Ib human clinical trial of a therapeutic that has the potential to improve the success of blood stem cell transplantation. This publication marks a success for the HSCI and their ability to carry a discovery from the lab bench to the clinic. This was actually the mandate for the HSCI when it was founded.

This Phase 1b safety study was published in the journal Blood, and it included 12 adult patients who underwent umbilical cord blood transplantation for leukemia or lymphoma at the Dana Farber Cancer Institute and Massachusetts General Hospital. Each patient received two umbilical cord blood units; one of which was untreated and another that was treated with a small molecule called 16,16 dimethyl prostaglandin E2 (dmPGE2). The immune systems of all 12 patients were successfully reconstituted and their bone marrow tissues were able to make blood cells. However, 10 of the 12 patients had blood formation that was solely derived from those umbilical cord blood cells that had been treated with dmPGE2.

This clinical test is now entering Phase II, during which the HSCI scientists will determine the efficacy of this treatment in 60 patients at 8 different medical centers. They expect results from this trial within 18-24 months.

The success of the HSCI depended on collaborations with scientists at different Harvard-affiliated institutions. These collaborations included 1) Leonard Zon, chair of the HSCI Executive Committee and Professor of Stem Cell and Regenerative Biology at Harvard, and his colleagues, 2) Dana-Farber Cancer Institute and Massachusetts General Hospital, led by hematologic oncologist and HSCI Affiliated Faculty member Corey Cutler, and 3) Fate Therapeutics, Inc., a San Diego-based biopharmaceutical company of which Zon is a founder, sponsored the Investigational New Drug application, under which the clinical program was conducted, and translated the research findings from the laboratory into the clinical setting.

“The exciting part of this was the laboratory, industry, and clinical collaboration, because one would not expect that much close interplay in a very exploratory trial,” Cutler said. “The fact that we were able to translate someone’s scientific discovery from down the hall into a patient just a few hundred yards away is the beauty of working here.”

Gastroenterologists have been interested in dmPGE2 for decades, because it has the ability to protect the intestinal lining from stress. However, its ability to amplify stem cell populations was identified in 2005 during a chemical screen exposing 5,000 known drugs to zebrafish embryos. Wolfram Goessling, MD, PhD, and Trista North, PhD former Zon postdoctoral fellows, were involved in that work.

“We were interested in finding a chemical that could amplify blood stem cells and we realized looking at zebrafish embryos that you could actually see blood stem cells budding from the animal’s aorta,” Zon said. “So, we elected to add chemicals to the water of fish embryos, and when we took them out and stained the aortas for blood stem cells, there was one of the chemicals, which is this 16,16 dimethyl prostaglandin E2, that gave an incredible expansion of stem cells—about a 300 to 400 percent increase.”

The dramatic effects of this molecule on blood stem cells causes Zon, who practices as a pediatric hematologist, consider how this prostaglandin could be applied to bone marrow transplantation. Bone marrow transplantations are often used to treat blood cancers, including leukemia and lymphoma. Bone marrow contains the body’s most plentiful reservoir of blood stem cells, and so patients with these conditions may be given bone marrow transplants to reconstitute their immune systems after their cancer-ravaged bone marrow has been wiped out with chemotherapy and radiation.

Zon designed a preclinical experiment, similar to the one later done with cord blood patients, in which mice undergoing bone marrow transplants received two sets of competing bone marrow stem cells, one set treated with dmPGE2 and a second untreated set.

“What we found was the bone marrow stem cells that were treated with prostaglandin, even for just two hours, had a four times better chance of engrafting in the recipient’s marrow after transplant,” he said. “I was very excited to move this into the clinic because I knew it was an interesting molecule.”

Zon and his team’s then visited the Dana Farber Cancer Institute (DFCI). There, they presented the mouse research at bone marrow transplant rounds and found physicians interested in giving the prostaglandin to patients.

“We basically sat down in a room and we brainstormed a clinical trial based on their scientific discovery, right then and there,” said Farber oncologist Corey Cutler. “They knew that it was something they could bring to the clinic, but they just didn’t know where it would fit. We said, if this molecule does what you say it does, significant utility would lie in umbilical cord blood transplants.”

A cord blood transplant is similar to a bone marrow transplant, but the blood stem cells are not from an adult donor but from the umbilical cord blood of a newborn. The degree of tissue matching is less in an umbilical cord blood transplant than in a bone marrow transplant. The umbilical cord stem cells are young and incipient and the immune system simply does not recognize them as readily as adult cells. Therefore, potentially fatal graft-versus-host disease is less common with umbilical cord blood transplants. About 10-20 percent of stem cell transplantation procedures now use umbilical cord blood. However the main disadvantage of umbilical cord blood transplantations is that the cord blood contains uses smaller amounts of cells, which makes engraftment is more difficult.

Umbilical cord blood transplants fail about 10 percent of the time. Therefore, increasing the procedure’s success would significantly help patients who do not have adult bone marrow donors, including a disproportionate number of non-Caucasian patients in North America. Increasing the engraftment rate would also allow the use of smaller umbilical cord blood units that are potentially better matches to their recipients, increasing the number of donations that go on to help patients.

Fate Therapeutics received the first green light from the US Food and Drug Administration, and the DFCI Institutional Review Board for this clinical trial. Umbilical cord blood processing was done by Dana-Farber’s Cell Manipulation Core Facility, directed by HSCI Executive Committee member Jerome Ritz, MD. There was a stumbling block in that once the human trial was underway with the first nine patients in that the protocol in use, which was developed in mice, did not translate to improved engraftment in humans.

“The initial results were very disappointing,” Cutler said. “We went back to the drawing board and tried to figure out why, and it turned out some of the laboratory-based conditions were simply not optimized, and that was largely because when you do something in the lab, the conditions are a little bit different than when you do it in a human.”

Fate Therapeutics discovered that the human cord blood was being handled at temperatures that were too cold (4-degrees Celsius) for the prostaglandin to biologically activate the stem cells. Therefore even after prostaglandin treatment, the umbilical cord blood did not show enhanced engraftment rates. Fate further demonstrated that performing the incubation of the hematopoietic stem cells at 37-degrees Celsius and increasing the incubation time from 1 hour to 2 hours elicited a much stronger gene and protein expression response that correlated with improved engraftment in animal models.

In running a second cohort of the Phase Ib trial, which included 12 patients, dmPGE2 appeared to enhance the engraftment properties of the blood stem cells in humans and was deemed safe to continue into Phase II. “It’s probably the most exciting thing I’ve ever done,” Zon said. “Basically, to watch something come from your laboratory and then go all the way to a clinical trial is quite remarkable and very satisfying.”

Stem Cells and LDL Play a Role in Atherosclerosis

Researchers at the University at Buffalo have discovered a new understanding of atherosclerosis in humans that include a key role for stem cells that promote inflammation.

Published in the journal PLOS One, this work extends to humans previous findings in lab animals by researchers at Columbia University that showed that high levels of LDL (“bad”) cholesterol promote atherosclerosis by stimulating production of hematopoietic stem/progenitor cells (HSPC’s).

“Our research opens up a potential new approach to preventing heart attack and stroke, by focusing on interactions between cholesterol and the HSPCs,” says Thomas Cimato, lead author on the PLOS One paper and assistant professor in the Department of Medicine in the UB School of Medicine and Biomedical Sciences.

Cimato noted that the role of stem cells in atherosclerosis could lead to the development of a useful therapy in combination with statins or to a novel therapy that could be used in place of statins for those individuals who cannot tolerate them.

In humans, high total cholesterol recruits stem cells from the bone marrow into the bloodstream. The cytokine IL-17, which has been implicated in many chronic inflammatory diseases, including atherosclerosis, is responsible for the recruitment of HSPCs. IL-17 boosts levels of granulocyte colony stimulating factor (GCSF), which induces the release of stem cells from the bone marrow.

According to Cimato, they observed that statins reduce the levels of HSPCs in the blood but not every subject responded similarly. “We’ve extrapolated to humans what other scientists previously found in mice about the interactions between LDL cholesterol and these HSPCs,” explains Cimato.

The fact that a finding in laboratory animals holds true for humans is noteworthy, adds Cimato. “This is especially true with cholesterol studies,” he says, “because mice used for atherosclerosis studies have very low total cholesterol levels at baseline. We feed them very high fat diets in order to study high cholesterol but it isn’t [sic] easy to interpret what the levels in mice will mean in humans and you don’t know if extrapolating to humans will be valid.”

Cimato added that the LDL concentrations in the blood of mice in their studies is much higher than what is found in patients who come to the hospital with a heart attack or stroke.

“The fact that this connection between stem cells and LDL cholesterol in the blood that was found in mice also turns out to be true in humans is quite remarkable,” he says.

Cimato explains that making the jump from rodents with very high LDL cholesterol to humans required some creative steps, such as the manipulation of the LDL cholesterol levels of subjects through the use of three different kinds of statins.

The study involved monitoring for about a year a dozen people without known coronary artery disease who were on the statins for two-week periods separated by one-month intervals when they were off the drugs.

“We modeled the mechanism of how LDL cholesterol affects stem cell mobilization in humans,” says Cimato.

Cimato and his group found that LDL cholesterol modulates the levels of stem cells that form neutrophils, monocytes and macrophages, the primary cell types involved in the formation of plaque and atherosclerosis.

The next step, he says, is to find out if HSPCs, like LDL cholesterol levels, are connected to cardiovascular events, such as heart attack and stroke.