Gamida Cell Phase 3 Study Design Outline Approved by FDA and EMA


Gamida Cell, a cell therapy company based in Jerusalem, Israel, has reached agreements with the US Food and Drug Administration (USFDA) and the European Medicines Agency (EMA) with regards to a Phase III study design outline for testing their NiCord product. NiCord is a blood cancer treatment derived from a single umbilical cord blood until expanded in culture and enriched with stem cells by means of the company’s proprietary NAM technology.

Gamida Cell is moving forward now with plans to commence an international, multi-center, Phase III study of NiCord in 2016. Phase I/II data of 15 patients are expected in the fourth quarter of 2015. NiCord is in development as an experimental treatment for various types of blood cancers including Acute Myeloid Leukemia (AML), Acute Lymphoblastic Leukemia (ALL), Myelodysplastic Syndrome (MDS), and Chronic Myelogenous Leukemia (CML).

NiCord® is derived from a single cord blood unit which has been expanded in culture and enriched with stem cells using Gamida Cell’s proprietary NAM technology. NAM technology proceeds from the observation that nicotinamide, a form of vitamin B3, inhibits the loss of functionality that usually occurs during the culture process of umbilical cord blood stem cells, when added to the culture medium. Pre-clinical studies have also shown that the expanded cell grafts manufactured using NAM technology demonstrate improved functionality following infusion in a living animal. These stem cells show improved movement, home to the bone marrow, and show higher rates of engraftment, or durable retention in the bone marrow. Based on these results, Gamida Cell is currently testing in clinical trials (in patients) cells expanded in culture with the NAM platform to determine their safety and effectiveness as a treatment for blood cancers, sickle-cell anemia and thalassemia. NiCord is intended to fill the crucial clinical need for a treatment for the vast majority of blood cancer patients indicated for bone marrow transplantation, with insufficient treatment options. This segment has a multi-billion dollar market potential.

“The FDA and EMA feedback is a major regulatory milestone for NiCord. NiCord is a life-saving therapy intended to provide a successful treatment for the large number of blood cancer patients who do not have a family related matched donor. Gamida Cell is dedicated to changing the paradigm in transplantation by bringing this therapy to market as soon as possible,” said Dr. Yael Margolin, president and CEO of Gamida Cell.

“The positive regulatory feedback confirms that Gamida Cell’s NiCord program is on a clear path to approval both in the U.S. and EU. We look forward to continuing the development of this very important product in cooperation with sites of excellence in cord blood transplantation worldwide,” said Dr. David Snyder, V.P. of Clinical Development and Regulatory Affairs at Gamida Cell.

The Phase III study will be a randomized, controlled study of approximately 120 patients. It will compare the outcomes of patients transplanted with NiCord to those of patients transplanted with un-manipulated umbilical cord blood.

 

New Standard of Care for Umbilical Cord Blood Transplants


New research led by John Wagner, Jr., M.D., director of the Pediatric Blood and Marrow Transplantation program at the University of Minnesota and a researcher in the Masonic Cancer Center, University of Minnesota, has established a new standard of care for children who suffer from acute myeloid leukemia (AML).

In a recent paper in the New England Journal of Medicine, Wagner and his coworkers compared clinical outcomes in children who suffered from acute leukemia and myelodysplastic syndrome who received transplants of either one unit or two units of partially matched cord blood. This large study was conducted at multiple sites across the United States, between December 2006 and February 2012. Coordinating the study was the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) in collaboration with the Pediatric Blood and Marrow Transplant Consortium and the Children’s Oncology Group.

Umbilical cord blood provides a wonderfully rich source of blood-forming stem cells, and has been demonstrated to benefit many diseases of the blood or bone marrow, as in the case of leukemia and myelodysplasia, or bone marrow failure syndromes, hemoglobinopathies, inherited immune deficiencies and certain metabolic diseases. For leukemia patients cord blood offers several advantages since there is no need for strict tissue-type matching (human leukocyte antigen or HLA matching) or for a prolonged search for a suitable donor.

Wagner and others discovered that the survival rates of children who received either one or two units of umbilical cord blood were about the same, but, overall, their recorded survival rates were better than those reported in prior published reports. These higher survival rates, therefore, represent a new standard of care for pediatric patients, for whom there is often an adequate single cord blood unit, and for adults for usually require double units, since a single unit with an adequate number of blood-forming stem cells simply may not exist at time.

“Based on promising early studies using two cord blood units in adults for whom one unit is often not sufficient, we designed this study in order to determine if the higher number of blood forming stem cells in two cord blood units might improve survival,” explained Wagner. “What we found, however, was that both treatment arms performed very well with similar rates of white blood cell recovery and survival.”

Children with blood cancers who receive transfusions of umbilical cord blood show quantifiable clinical benefits even though the blood may not match their own tissue types. The reason stems from the immaturity of cord blood stem cells and their ability to suppress rejection from the immune system. This is an important aspect of umbilical cord blood transplants, since patients who cannot find a matched unrelated donor also benefit from cord blood transplants. However, cord collection from the placenta after birth often results in a limited number of blood-forming stem cells, which decreases the potential benefits of cord blood. The “double UCB approach” was pioneered at the University of Minnesota as a strategy to overcome this inherent limitation in the use of umbilical cord blood.

Despite the similarities in survival rates between children who received one unit or two units of cord blood, some differences were noted. Children transplanted with a single cord unit had faster recovery rates for platelets and lower risks of Graft Versus Host Disease; a condition in which the transplanted donor blood immune cells attack the patient’s body, which causes several complications.

“This is helpful news for physicians considering the best treatment options for their patients,” said Joanne Kurtzberg, M.D., chief scientific officer of the Robertson Clinical and Translational Cell Therapy Program, director of the Pediatric Blood and Marrow Transplant Program, co-director of the Stem Cell Laboratory and director of the Carolinas Cord Blood Bank at Duke University Medical Center. “We found children who have a cord blood unit with an adequate number of cells do not benefit from receiving two units. This reduces the cost of a cord blood transplant for the majority of pediatric patients needing the procedure. However, for larger children without an adequately dosed single cord blood unit, using two units will provide access to a potentially life-saving transplant.”

“The involvement of multiple research partners was instrumental to the success of the study completion,” added Dennis Confer, M.D., chief medical officer for the National Marrow Donor Program® (NMDP)/Be The Match® and associate scientific director for CIBMTR. “This trial is a testament to the importance of the BMT CTN and the collaboration of partners like the Children’s Oncology Group.”

Mary Horowitz, M.D., M.S., chief scientific director of CIBMTR and professor of medicine at the Medical College of Wisconsin, concurred. “Because of this tremendous collaboration, we were able to expand the scale of this research to multiple transplant centers across the United States and Canada. And the results will undoubtedly improve clinical practice, and most importantly, patient outcomes.”

Interestingly, in this study, patients who received cord blood with significant HLA mismatches showed no detrimental effects on their outcomes. Future studies will examine a closer look at how the HLA match within the cord blood unit impacts outcomes for patients, particularly those within minority populations.

Mouse Blood Cells Reprogrammed into Blood Cell Stem Cells


Boston Children’s Hospital researchers have directly reprogrammed mature blood cells from mice into blood-forming hematopoietic stem cells by using a cocktail of eight different transcription factors.

These reprogrammed cells have been called induced hematopoietic stem stem cells or iHSCs. These cells have all the hallmarks of mature mouse HSCs and they have the capacity to self-renew and differentiate into all the blood cells that circulate throughout the body.

These findings are highly significant from a clinical perspective because they indicate that it might be entirely possible to directly reprogram a patient’s existing, mature blood cells into a hematopoietic stem cell for transplantation purposes. Such a procedure, known as hematopoietic stem cells transplantation or HSCT, is a common treatment for patients whose bone marrow has suffered irreparable damage due to environmental causes (heavy metals, chloramphenicol, etc) or disease (cancer). The problem with HSCT is finding a proper match for the patient and then procuring clinically significant quantities of high-quality bone marrow for HSCT.

Derrick J. Rossi, an investigator in the Program in Cellular and Molecular Medicine at Boston Children’s Hospital and Assistant Professor in the Department of Stem Cell & Regenerative Biology, explained: “HSCs comprise only about one in every 20,000 cells in the bone marrow. If we could generate autologous (a patient’s own) HSCs from other cells, it could be transformative for transplant medicine and for our ability to model diseases of blood development.”

Rossi and his collaborators have screened genes that are expressed in 40 different types of blood progenitor cells in mice. This screen identified 36 different genes that control the expression of the other genes. These 36 genes encode so-called “transcription factors,” which are proteins that bind to DNA and turn gene express on or shut it off.

Blood cell production tends to go from the stem cells to progeny cells called progenitor cells that can still divide to some limited extent, and to effector cells that are completely mature and, in most cases, do not divide (the exception is lymphocytes, which expand when activated by specific foreign substances called antigens).

Further work by Rossi and others identified six transcription factors (Hlf, Runx1t1, Pbx1, Lmo2, Zfp37, and Prdm5) of these 36 genes, plus two others that were not part of their original screen (N-Myc and Meis1) that could robustly reprogram myeloid progenitor cells or pro/pre B lymphocytes into iHSCs.

Print

To put these genes into these blood cells, Rossi and others uses souped-up viruses that introduced all either genes under the control of sequences that only allowed expression of these eight genes in the presence of the antibiotic doxycycline. Once these transfected cells were transplanted into mice, the recipient mice were treated with doxycycline, and the implanted cells formed HSCs.

When this experiment utilized mice that were unable to make their own blood cells, because their bone marrow had been wiped out, the implanted iHSCs reconstituted the bone marrow and blood cells of the recipient mice.

To further show that this reconstituted bone marrow was normal, high-quality bone marrow, Rossi and others used these recipient mice as bone marrow donors for sibling mice whose bone marrow had been wiped out. This experiment showed that the mice that had received the iHSCs had bone marrow that completely reconstituted the bone marrow of their siblings. This established that the iHSCs could completely reestablish the bone marrow of another mouse.

Thus Rossi and others had established that iHSCs could in fact created HSCs from progenitor cells, but could they do the same thing with mature blood cells that were not progenitor cells? Make that another yes. When Rossi and others transfected their eight-gene cocktail into mature myeloid cells, these mature cells also made high-quality iHSCs.

Rossi noted that no one has been able to culture HSCs in the laboratory for long periods of time. A few laboratories have managed expand HSCs in culture, but only on a limited basis for short periods of time (see Aggarwal R1, Lu J, Pompili VJ, Das H. Curr Mol Med. 2012 Jan;12(1):34-49).  In these experiments, Rossi used his laboratory mice as living culture systems to expand his HSCs, which overcomes the problems associated with growing these fussy stem cells in culture.

Gene expression studies of his iHSCs established that, from a gene expression perspective, the iHSCs were remarkably similar to HSCs isolated from adult mice.

This is certainly an exciting advance in regenerative medicine, but it is far from being translated into the clinic.  Can human blood progenitor cells also be directly reprogrammed using the same cocktail?  Can mature myeloid cells be successfully reprogrammed?  Will some non-blood cell be a better starting cell for iHSC production in humans?  As you can see there are many questions that have to be satisfactorily answered before this procedure can come to the clinic.

Nevertheless, Rossi and his team has succeeded where others have failed and the results are remarkable.  HSCs can be generated and transplanted with the use of only a few genes.  This is certainly the start of what will hopefully be a fruitful regenerative clinical strategy.

On a personal note, my mother passed about almost a decade ago after a long battle with myelodysplastic syndrome, which is a pre-leukemic condition in which the bone marrow fails to make mature red blood cells.  Instead the bone marrow fills up with immature red blood cells and the patient has to survive on blood transfusions.

The reason for this condition almost certainly stems from defective HSCs that do not make normal progeny.  Therefore the possibility of using a patient’s own cells to make new HSCs that can repopulate the bone marrow is a joyful discovery for me to read about, even though it is some ways from the clinic at this point.

RNA Molecule Protects Stem Cells During Inflammation


During inflammation and infection, bone marrow stem cells that make blood cells (so-called hematopoietic stem cells or HSCs) and progenitor cells are stimulated to proliferate and differentiate into mature immune cells. This especially the case for cells of the so-called “myeloid lineage.

Hematopoietic Stem Cells (HSCs) are able to differentiate into cells of two primary lineages, lymphoid and myeloid. Cells of the myeloid lineage develop during the process of myelopoiesis and include Granulocytes, Monocytes, Megakaryocytes, and Dendritic Cells. Circulating Erythrocytes and Platelets also develop from myeloid progenitor cells.

Hematopoiesis from Multipotent Stem Cell

Repeated infections and inflammation can deplete these cell populations, which leads to serious blood conditions and increased incidence of cancer.

A research team from the California Institute of Technology, led by Nobel Prize winner, David Baltimore, has discovered a small RNA molecule called microRNA-146a (miR-146a) that acts as a safety valve to protect HSCs during chronic inflammation. These findings also suggest that deficiencies for miR-146a might contribute to blood cancers and bone marrow failure.

Baltimore and his colleagues bred mice that lacked miR146a. MicroRNAs are very short RNA molecules (around 22 base pairs long) that regulate the activities of other genes. They control the expression of genes at the transcriptional and post-transcriptional level. In the case of miR146a(-) mice, whenever these mice were subjected to chronic inflammation, the total number and quality of their HSCs declined steadily. In contrast, miR-146a(+) mice were better able to maintain their levels of HSCs despite long-term inflammation.

The lead author of this work, Jimmy Zhao, said, “This mouse with genetic deletion of miR146a is a wonderful model with which to understand chronic inflammation-driven tumor formation and hematopoietic stem cell biology during chronic inflammation.”

Zhao also noted the surprising result that the deletion of one microRNA could cause such a profound and dramatic pathology. This underscores the critical and indispensable function of miR-146a in protecting the quality and longevity of HSCs. This work also establishes the connection between chronic inflammation and bone marrow failure and diseases of the blood.

Even more exciting is the prospect of synthesizing anti-inflammatory drugs that could treat blood disorders. In fact, it is possible that artificially synthesized miR146a might be an effective treatment if small RNAs can be effectively delivered to specific cells.

Zhao also noted the close resemblance that this mouse model has to the blood disorder human myelodysplastic syndrome or MDS. MDS is a form of pre-leukemia that causes severe anemia and a dependence on blood transfusions. MDS usually leads to acute myeloid leukemia. Further study of Zhao and Baltimore’s miR146a(-) mouse might lead to a better understanding of MDS and potential new treatments for MDS.

David Baltimore, senior author of this paper, said, “This study speaks of the importance of keeping chronic inflammation in check and provides a good rationale for broad use of safer and more effective anti-inflammatory molecules. If we can understand what cell types and proteins are critically important in chronic-inflammation-driven tumor formation and stem cell exhaustion, we can potentially design better and safer drugs to intervene.”

See Jimmy L Zhao, Dinesh S Rao, Ryan M O’Connell, Yvette Garcia-Flores, David Baltimore. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice.  DOI: http://dx.doi.org/10.7554/eLife.00537Published May 21, 2013.  Cite as eLife 2013;2:e00537.

Postscript: This paper is especially meaningful to me because my mother died of MDS. The fact that a better model system for MDS has been established is an essential first step in finding a treatment for this killer disease.