Minneapolis Heart Institute Foundation Tests Stem Cell Combination in Heart Attack Patients


The Minneapolis Heart Institute Foundation has announced a new clinical trial that will examine the ability of a stem cell combination to treat patients with ischemic heart failure.

In patients who have suffered from former heart attacks, clogged coronary blood vessels and heart muscle that hibernates can result in a heart that no longer works well enough to support the life of the patient. The lack of blood flow to vital parts of the heart and an increasing work load can result is so-called “Ischemic heart failure.” Such heart failure after a previous heart attack is one of the leading cause of death and morbidity in the world. According to the World Health Organization, ischemic heart disease affects more than 12% of the world’s population.

Stem cell therapy has been tested as a potential treatment for ischemic heart disease. Despite flashes of remarkable success, the overall efficacy of these treatments has been relatively modest. Most clinical trials have used the patient’s own bone marrow cells. In this case, the cell population is very mixed and it might not even be stem cell populations in the bone marrow that are eliciting recovery. Also, the quality of each patient’s bone marrow is probably quite varied, which makes standardizing such experiments remarkably difficult. Other clinical trials have used bone marrow derived mesenchymal cells [MSCs]. Several clinical trials with MSCs have seen some improvement in patients. MSCs seem to induce the formation of new blood vessels and also seem to induce endogenous stem cell populations in the heart to come to life and fix the heart. Other trials have used cardiac stem cells (CSCs) that were derived from biopsies of the heart. Even though fewer clinical trials have tested the efficacy of CSCs in human patients, the trials that have been conducted suggest that these cells can truly regenerate damaged heart tissue.

The Minneapolis Heart Institute Foundation® (MHIF) has announced a new clinical trial which will examine the combination of MSCs with CSCs to treatment patients with ischemic heart failure. This clinical trial, the CONCERT study, will be led by Principal Investigator Jay Traverse, MD. The CONCERT study will implant MSC’s and CSC’s in order to determine if the combination would be more successful than using either alone based on pre-clinical studies in swine demonstrating an enhanced synergistic effect of the combination.

CONCERT is sponsored by the National Institutes of Health and the Cardiovascular Cell Therapy Research Network (CCTRN), of which MHIF is a charter member. This will be a phase II clinical trial, which means that the focus of this leg of the study is to assess the relative safety of CSCs and MSCs, delivered either alone, or in combination, in comparison to placebo, and to measure the efficacy of the stem cell cocktail as well. To that end, researchers will measure and note any change or improvement in left ventricular (LV) function by cardiac MRI as well as changes in various clinical outcomes (survival, 6-minute walking, blood pressure, etc.), and quality of life.

This phase II study is a randomized, blinded, placebo-controlled study that will enroll 160 subjects at seven different CCTRN sites throughout the U.S. All recruited subjects will have ischemic cardiomyopathy and an ejection fraction 5%). This is significant, because some work in animals suggests that CSCs can make new heart muscle tissue that can shrink the heart scar. The first 16 patients were recently enrolled in a FDA-required safety run-in phase, but the remaining patients will be enrolled in the fall after a three-month safety analysis is performed. Incidentally, this is the first cardiac stem cell trial to perform MRIs on patients with defibrillators and pacemakers

“This combination of cells represents the most potent cell therapy product ever delivered to patients,” said Dr. Traverse. “Confirming that both types of stem cells together work better than either individual cell type could lead to improved patient outcomes and better quality of life for ischemic heart failure patients.”

Do Human Mesenchymal Stem Cell Therapies Help Older Patients with Ischemic Cardiomyopathy?


Joshua Hare from the Interdisciplinary Stem Cell Institute at the University of Miami Miller School of Medicine in Miami, Florida has conducted a variety of high-quality clinical trials that have tested the ability of mesenchymal stem cells to heal the hearts of patients with ischemic heart disease. Two of these trials, (Transendocardial Autologous Cells in Ischemic Heart Failure) and POSEIDON (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis), injected mesenchymal stem cells from bone marrow directly into damaged heart muscle.

Both of these studies not only showed an increase in heart function after injection of mesenchymal stem cells compared to placebo, but further examination showed that mesenchymal stem cells induced shrinkage of the heart scar and replacement with living heart muscle tissue (see Alan Heldman and others, Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy: The TAC-HFT Randomized Trial, JAMA, Published online November 18th 2013). However, Hare wanted to compare the benefits experienced by younger patients with older patients in order to determine if age had any effect on the efficacy of this treatment.

To that end, Hare and his colleagues compared subjects from the TAC-HFT and POSEIDON clinical trials in 2 age groups: younger than 60 and 60 years of age and older. They used a 6-min walk distance to measure heart function and the Minnesota Living With Heart Failure Questionnaire (MLHFQ) to ascertain the quality of life of each patient.  Patients were tested at baseline (before the procedure), 6 months, and 1 year after the procedure.  Hare and his group also used particular cardiac imaging measurements, such as absolute scar size and compared the baseline size of the heart scar, and then again 1 year after the procedure.

These two tests, the 6MWD and the MLHFQ showed improvements in both age groups. These improvements were even significant in both groups. What this analyses show is that mesenchymal stem cell therapy helps patients with ischemic heart failure, regardless of their age. Older individuals did not have an impaired response to MSC therapy.

This is an important result because heart disease is very often a condition of the aged and there are concerns as to whether or not older patients would benefit from regenerative medical procedures. Hare’s study suggests that older patients do benefit from these procedures. A caveat is that older patients have lower-quality mesenchymal stem cells, but these studies tended to use allogeneic mesenchymal stem cells or stem cells from donors. Therefore, allogeneic stem cell treatments may prove effective in older heart patients.

Fat-Based Stem Cells in the PRECISE Trial Stabilizes Exercise Performance in Chronic Heart Disease Patients


Cytori Therapeutics has announced the publication of safety and efficacy data from a 36-month European clinical trial of Cytori Cell Therapy in patients with chronic ischemic heart failure. Final data from the Company’s PRECISE trial, a 27-patient, prospective, randomized, double-blind, placebo-controlled, feasibility trial (Phase I/IIA), demonstrated statistically significant differences in cardiac functional capacity between treated and placebo groups.

Their research will appear in the upcoming issue of the American Heart Journal. Cytori Cell Therapy is a mixed population of adipose derived regenerative cells (ADRCs™) extracted from a patient’s own adipose tissue using Cytori’s proprietary Celution® System.

“The PRECISE trial is the first-in-man trial involving the myocardial injection of ADRCs for heart disease,” said Dr. Emerson Perin , Co-Principal Investigator of the trial. “By demonstrating a strong safety profile and suggesting that the use of ADRCs may preserve functional capacity, the data indicates that this therapy may have meaningful impacts on the lives of these very sick patients.”

This particular publication was co-authored by trial investigators Drs. Emerson C. Perin at Texas Heart Institute, Francisco Fernández-Avilés at Hospital Universitario Gregorio Marañón and others. This clinical trial shows that the procedure was safe, feasible and showed indications of a favorable benefit to the patients who received it. The study demonstrated that fat harvest through liposuction could be performed safely in cardiac patients. Exercise capacity as reflected by maximum oxygen consumption (MVO2) during treadmill testing, a reflection of cardiac functional capacity, was sustained in the ADRC treated group but declined in the placebo group at 6 and 18 months. Statistically significant differences were observed between the two groups.

“These results supported the design of the ongoing U.S. Phase II ATHENA trial that is evaluating a similar patient population,” said Steven Kesten , M.D., Chief Medical Officer for Cytori. “We are encouraged by the sustained effects in functional endpoints, particularly MVO2, which is a relevant clinical endpoint in heart disease, and is an aid in directing treatment options, such as assist devices or heart transplant. We look forward to reporting the initial six-month results from the ATHENA trial.”

Additionally, other data trends in this study suggest that ADRC therapy may have a modest beneficial effect in stabilization of the heart scar tissue. To understand the meaning of this benefit, remember that ischemic heart disease might also be known as coronary artery disease (CAD), atherosclerotic heart disease, or coronary heart disease. Ischemic Heart Disease is the most common type of heart disease and cause of heart attacks. This disease is typically caused by plaque build up along the inner walls of the arteries of the heart, which leads to narrowing of the arteries and reduction of blood flow to the heart. After a heart attack, the region of the heart that was deprived of oxygen for a period time dies and the dead heart muscle tissue is replaced by scar tissue that contracts over time, but does not contract or conduct heartbeat impulses. In this study, the scar mass of the left ventricle remained consistent in ADRC-treated patients at six months compared to an increase in control patients. This suggests that ADRCs may prevent scar tissue from increasing. Other endpoints such as ventricular volumes and ejection fraction showed inconsistent findings.

In the PRECISE trial, all patients were treated with standard-of-care and subsequently underwent a liposuction procedure. Each patient’s adipose tissue was processed using Cytori’s proprietary Celution® System to prepare the cell therapy. Cells (n=21) or placebo (n=6) were injected into areas of the heart muscle that were severely damaged but still viable and reversible using the NOGA XP System.

Cytori is currently enrolling patients in the U.S. ATHENA and ATHENA II trials, both 45 patient prospective, randomized, double-blind, placebo-controlled trials investigating a lower and a higher dose, respectively, of Cytori Cell Therapy in a similar patient population as PRECISE.

The PRECISE study is a small study, but the fact that it was double-blinded and placebo controlled makes it an important study. The experimental group showed a clear stabilization of maximum oxygen consumption as opposed to the control group, whose exercise tolerance decreased during the course of the trial. This is potentially significant.  The ADRCs could be preventing the heart from enlarging as a result of working harder.

Questions, however, remain.  For example, is this a short-term effect or does it maintain its effect over the long-term period? To answer that, patient follow-up is necessary. Second, the other physiological parameters showed confusing outcomes (ejection fraction, end-diastolic volume, and so on).  If the ADRCs are truly helping the heart function better, then why don’t the physiological parameters used to measure heart function show some semblance of improvement?  The stabilization of the maximum oxygen consumption stabilization might not mean much in retrospect if it is short-term.

A larger trial like the ATHENA study will be more powerful. Hopefully these PRECISE patients will be followed and examined several years after the treatment to determine the duration of the ADR-provided benefits.