Stem Cells and LDL Play a Role in Atherosclerosis


Researchers at the University at Buffalo have discovered a new understanding of atherosclerosis in humans that include a key role for stem cells that promote inflammation.

Published in the journal PLOS One, this work extends to humans previous findings in lab animals by researchers at Columbia University that showed that high levels of LDL (“bad”) cholesterol promote atherosclerosis by stimulating production of hematopoietic stem/progenitor cells (HSPC’s).

“Our research opens up a potential new approach to preventing heart attack and stroke, by focusing on interactions between cholesterol and the HSPCs,” says Thomas Cimato, lead author on the PLOS One paper and assistant professor in the Department of Medicine in the UB School of Medicine and Biomedical Sciences.

Cimato noted that the role of stem cells in atherosclerosis could lead to the development of a useful therapy in combination with statins or to a novel therapy that could be used in place of statins for those individuals who cannot tolerate them.

In humans, high total cholesterol recruits stem cells from the bone marrow into the bloodstream. The cytokine IL-17, which has been implicated in many chronic inflammatory diseases, including atherosclerosis, is responsible for the recruitment of HSPCs. IL-17 boosts levels of granulocyte colony stimulating factor (GCSF), which induces the release of stem cells from the bone marrow.

According to Cimato, they observed that statins reduce the levels of HSPCs in the blood but not every subject responded similarly. “We’ve extrapolated to humans what other scientists previously found in mice about the interactions between LDL cholesterol and these HSPCs,” explains Cimato.

The fact that a finding in laboratory animals holds true for humans is noteworthy, adds Cimato. “This is especially true with cholesterol studies,” he says, “because mice used for atherosclerosis studies have very low total cholesterol levels at baseline. We feed them very high fat diets in order to study high cholesterol but it isn’t [sic] easy to interpret what the levels in mice will mean in humans and you don’t know if extrapolating to humans will be valid.”

Cimato added that the LDL concentrations in the blood of mice in their studies is much higher than what is found in patients who come to the hospital with a heart attack or stroke.

“The fact that this connection between stem cells and LDL cholesterol in the blood that was found in mice also turns out to be true in humans is quite remarkable,” he says.

Cimato explains that making the jump from rodents with very high LDL cholesterol to humans required some creative steps, such as the manipulation of the LDL cholesterol levels of subjects through the use of three different kinds of statins.

The study involved monitoring for about a year a dozen people without known coronary artery disease who were on the statins for two-week periods separated by one-month intervals when they were off the drugs.

“We modeled the mechanism of how LDL cholesterol affects stem cell mobilization in humans,” says Cimato.

Cimato and his group found that LDL cholesterol modulates the levels of stem cells that form neutrophils, monocytes and macrophages, the primary cell types involved in the formation of plaque and atherosclerosis.

The next step, he says, is to find out if HSPCs, like LDL cholesterol levels, are connected to cardiovascular events, such as heart attack and stroke.

First Patient Treated in Study that Tests Stem Cell-Gene Combo to Repair Heart Damage


The first patient has been treated in a groundbreaking medical trial in Ottawa, Canada, that uses a combination of stem cells and genes to repair tissue damaged by a heart attack. The first test subject is a woman who suffered a severe heart attack in July and was treated by the research team at the Ottawa Hospital Research Institute (OHRI). Her heart had stopped beating before she was resuscitated, which caused major damage to her cardiac muscle.

The therapy involves injecting a patient’s own stem cells into their heart to help fix damaged areas. However, the OHRI team, led by cardiologist Duncan Stewart, M.D., took the technique one step further by combining the stem cell treatment with gene therapy.

“Stem cells are stimulating the repair. That’s what they’re there to do,” Dr. Stewart said in an interview. “But what we’ve learned is that the regenerative activity of the stem cells in these patients with heart disease is very low, compared to younger, healthy patients.”

Stewart and his colleagues will supply the stem cells with extra copies of a particular gene in an attempt to restore some of that regenerative capacity. The gene in question encodes an enzyme called endothelial nitric oxide synthase (eNOS). Nitric oxide is a small, gaseous molecule that is made from the amino acid arginine by the enzyme nitric oxide synthase. Nitric oxide or NO signals to smooth muscle cells that surround blood vessels to relax, which causes blood vessels to dilate and this increases blood flow. In the damaged heart, NO also helps build up new blood vessels, which increase healing of the cardiac muscle. Steward added, “That, we think, is the key element. We really think it’s the genetically enhanced cells that will provide the advantage.”

Nitric oxide synthesis

The study will eventually involve 100 patients who have suffered severe heart attacks in Ottawa, Toronto and Montreal.

Producing blood cells from stem cells could yield a purer, safer cell therapy


The journal Stem Cells Translational Medicine has published a new protocol for reprogramming induced pluripotent stem cells (iPSCs) into mature blood cells. This protocol uses only a small amount of the patient’s own blood and a readily available cell type. This novel method skips the generally accepted process of mixing iPSCs with either mouse or human stromal cells. Therefore, is ensures that no outside viruses or exogenous DNA contaminates the reprogrammed cells. Such a protocol could lead to a purer, safer therapeutic grade of stem cells for use in regenerative medicine.

The potential for the field of regenerative medicine has been greatly advanced by the discovery of iPSCs. These cells allow for the production of patient-specific iPSCs from the individual for potential autologous treatment, or treatment that uses the patient’s own cells. Such a strategy avoids the possibility of rejection and numerous other harmful side effects.

CD34+ cells are found in bone marrow and are involved with the production of new red and white blood cells. However, collecting enough CD34+ cells from a patient to produce enough blood for therapeutic purposes usually requires a large volume of blood from the patient. However, a new study outlined But scientists found a way around this, as outlined by Yuet Wai Kan, M.D., FRS, and Lin Ye, Ph.D. from the Department of Medicine and Institute for Human Genetic, University of California-San Francisco has devised a way around this impasse.

“We used Sendai viral vectors to generate iPSCs efficiently from adult mobilized CD34+ and peripheral blood mononuclear cells (MNCs),” Dr. Kan explained. “Sendai virus is an RNA virus that carries no risk of altering the host genome, so is considered an efficient solution for generating safe iPSC.”

“Just 2 milliliters of blood yielded iPS cells from which hematopoietic stem and progenitor cells could be generated. These cells could contain up to 40 percent CD34+ cells, of which approximately 25 percent were the type of precursors that could be differentiated into mature blood cells. These interesting findings reveal a protocol for the generation iPSCs using a readily available cell type,” Dr. Ye added. “We also found that MNCs can be efficiently reprogrammed into iPSCs as readily as CD34+ cells. Furthermore, these MNCs derived iPSCs can be terminally differentiated into mature blood cells.”

“This method, which uses only a small blood sample, may represent an option for generating iPSCs that maintains their genomic integrity,” said Anthony Atala, MD, Editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “The fact that these cells were differentiated into mature blood cells suggests their use in blood diseases.”

Overexpression of a Potassium Channel in Heart Muscle Cells Made From Embryonic Stem Cells Decreases Their Arrhythmia Risk


Embryonic stem cells have the capacity to differentiate into every cell in the adult body. One cell type into which embryonic stem cells (ESCs) can be differentiated rather efficiently is cardiomyocytes, which is a fancy term for heart muscle cells. The protocol for making heart muscle cells from ESCs is well worked out, and the conversion is rather efficient and the purification schemes that have been developed are also rather effective (for example, see Cao N, et al., Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013 Sep;23(9):1119-32. doi: 10.1038/cr.2013.102 and Mummery CL et al., Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012 Jul 20;111(3):344-58).

Using these cells in a clinical setting has two large challenges. The first is that embryonic stem cell derivatives are rejected by the immune system of the recipient, thus setting up the patient for a graft versus host response to the implanted tissue, thus making the patient even sicker than when they started. The second problem is that heart muscle cells made from ESCs are immature and cause the heart to beat abnormally fast thus causing “tachyarrythmias” and died within the first two weeks after the transplant (see Liao SY, et al., Heart Rhythm 2010 7:1852-1859).

Both of these problems are large problems, but the laboratory of Ronald Li at the University of Hong Kong at used a genetic engineering trick to make heart muscle cells from mouse embryonic stem cells to seemingly fix this problem.

Li and his colleagues engineered mouse ESCs with a gene for a potassium rectifier channel that could be induced with drugs. Then they differentiated these genetically ESCs into heart muscle cells. This potassium rectifier channel (Kir2.1) is not present in immature heart muscle cells and putting it into these cells might cause them to beat at a slower rate.

These engineered ESC-derived heart muscle cells were tested for their electrophysiological properties first. Without the drug that induces KIR2.1, the heart muscle cells showed very abnormal electrical properties. However, once the drug was added, their electrical properties looked much more normal.

Then they induced heart attacks in laboratory animals and implanted their engineered ESC-derived heart muscle cells 1 hour after the heart attacks were induced. Animals not given the drug to induce the expression of Kir2.1 faired very poorly and had episodes of tachyarrythmia (really fast heart beat) and over half of them died by 5 weeks after the implantation. Essentially the implanted animals did worse than those animals that had had a heart attack that were not treated. However, those animals that were given the drug that induces the expression of Kir2.1 in heart muscle cells did much better. The survival rate of these animals was higher than the untreated animals after about 7 weeks after the procedure. Survival rates increased by only a little, but the increase was significant. Also, the animals that died did not die of tachyarrythmias. In fact the rate of tachyarrythmias in the animals given the inducing drug (which was doxycycline by the way) had significantly lower levels of tachyarrythmia than the other two groups.

Other heart functions were also significantly affected. The ejection fraction in the animals that ha received the Kir2.1-expression heart muscle cells was 10-20% higher than the control animals. Also the density of blood vessels was substantially higher in both sets of animals treated with ESC-derived heart muscle cells. The echocardiogram of the hearts implanted with the Kir2.1-expressing heart muscle cells was altogether more normal than that of the others.

This paper is a significant contribution to the use of ESC-derived cells to treat heart patients. The induction of heart arrhythmias by ESC-derived heart muscle cells is a documented risk of their use. Li and his colleagues have effectively eliminated that risk in this paper by forcing the expression of a potassium rectifier channel in the ESC-derived heart muscle cells. Also, because these cells were completely differentiated and did not have any interloping pluripotent cells in their culture, tumor formation was not observed.

There are a few caveats I would like to point out. First of all, the increase in survival rate above the control is not that impressive. The improvement in heart function parameters is certainly encouraging, but because the survival rates are not that higher than the control mice that received no treatment, it appears that these benefits were only conferred to those mice who survived in the first place.

Secondly, even though the heart attacks were induced in the ventricles of the heart, Li and his colleagues injected a mixture of heart muscle cells that included atrial, ventricular, nodal and heart fibroblasts. This provides an opportunity for beat mismatches and a “substrate for ventricular tachycardia” as Li puts it. In the future, the transplantation of just ventricular heart muscle cells would be cleaner experiment. Since these mice were not observed long enough to observe potential arrythmias that might have arisen from the presence of a mixed population in the ventricle.

Finally, in adapting this to humans might be difficult, since the hearts of mice beat so much faster than those of humans. It is possible that even if human cardiomyocytes were engineered with Kir2.1-type channels, that arrythmias might still be a potential problem.

Despite all that, Li’s publication is a large step forward.

Treating Crohn’s Disease Fistulas with Fat Stem Cells


All of us have probably heard of Crohn’s disease or have probably known someone with Crohn’s disease. While the severity of this disease varies from patient to patient, some people with Crohn’s disease simply cannot get a break.

Crohn’s disease is one of a group of diseases known as IBDs or “Inflammatory Bowel Diseases.” IBDs include Crohn;s disease, which can affect either the small or large intestine and rarely the esophagus and mouth, ulcerative colitis, which is restricted to the large intestine, and other rarer types of IBDs known that include Collagenous colitis, Lymphocytic colitis, Ischaemic colitis, Diversion colitis, Behçet’s disease, and Indeterminate colitis.

Crohn’s disease (CD) involves the patient’s immune system attacking the tissues of the gastrointestinal tract, which leads to chronic inflammation within the bowel. While the exact mechanism by which this disease works is still not completely understood and robustly debated, Crohn’s disease was originally thought to be an autoimmune disease in which the immune system recognizes some kind of surface protein in the gastrointestinal tract as foreign and then attacks it. However, genetic studies of CD, linked with clinical and immunological studies have shown that this is not the case. Instead, CD seems to be due to a poor innate immunity so that the bowel has an accumulation of intestinal contents that breach the lining of the gastrointestinal tract, resulting in chronic inflammation. A seminal paper by Daniel Marks and others in the Lancet in 2006 provided hard evidence that this is the case. When Marks and others tested the white blood cells from CD patients and their ability to react to foreign invaders, those cells were sluggish and relatively ineffective. Therefore, Crohn’s seems to be an overactivity of the acquired immunity to make up for poor innate immunity.

Given all that, one of the biggest, most painful consequences of CD are anal fistulas. If those sound painful it’s because they are. A fistula is a connection between to linings in your body that should not normally be connected. In CD patients, the anus and the attached rectum get kicked about by excessive inflammation and tears occur. These tears heal, but the healing can cause connections between linings that previously did not exist. Therefore fecal material not comes out of the body in more than one place. Sounds disgusting? It gets worse. Those areas that leak feces are not subject to extensive pus formation and they must be fixed surgically. But how do you fix something that is constantly inflamed? It’s an ongoing problem in medicine.

Enter stem cells to the rescue, maybe. In Spain, a multicenter clinical study has just been published that shows that fat-derived mesenchymal stem cells might provide a better way to treat these fistulas in CD patients. Mesenchymal stem cells have the ability to suppress inflammation, and for that reason, they are excellent candidates to accelerate healing in cases such as these.

Galindo and his group took 24 CD patients who had at least one draining fistula (yes, some have more than one) and gave them 20 million fat-derived mesenchymal stem cells. These cells were extracted from someone else, which is an important fact, since liposuction procedures on these patients might have added to their already surfeit of inflammation.

For this treatment, the cells were administered directly on the lesion, which is almost certainly important. If the closing of the fistula was incomplete after 12 weeks, then the patients were given another dose of 40 million fat-derived mesenchymal stem cells right on the lesion. All these patients were followed until week 24 after the initial stem cell administration.

The results were very hopeful. There were no major adverse effects six months after the stem cell treatment. This is a result seen over and over with mesenchymal stem cells – they are pretty safe when administered properly. Secondly, full analysis the data showed that at week 24 69.2% of the patients showed a reduction in the number of draining fistulas. Even more remarkably, 56.3% of the patients achieved complete closure of the treated fistula. That is just over half. Also, 30% of the cases showed complete closure of all existing fistulas. These results are exciting when you consider the criteria they used for complete closure: absence of draining pus through its former opening. complete “re-epithelization” of the tissue, which means that the lining of the tissue is healed, looks normal and is properly attached to the proper neighbors, and magnetic resonance image (MRI) scans of the region must look normal. For these patients, the MRI “Score of Severity,” which is a measure of the structural abnormality of the anal region, showed statistically significant reductions at week 12 with a marked reduction at week 24. Folks that’s good news.

Galindo interprets his results cautiously and notes that this is a small study, which is true. He also states that the goal of this study was to ascertain the safety of this technique, and when it comes to safety, this technique is certainly safe. When it comes to efficacy, another larger study is required that specifically examined the efficacy of this technique. Galindo is, of course, quite correct, but this is certainly a very exciting result, and hopefully these cells will get further chances to “strut their therapeutic stuff.”

See de la Portilla F, et al Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial.  Int J Colorectal Dis. 2013 Mar;28(3):313-23. doi: 10.1007/s00384-012-1581-9. Epub 2012 Sep 29.

Culture Medium from Endothelial Progenitor Cells Heals Hearts


Endothelial Progenitor Cells or EPCs have the capacity to make new blood vessels but they also produce a cocktail of healing molecules. EPCs typically come from bone marrow, but they can also be isolated from circulating blood, and a few other sources.

The laboratory of Noel Caplice at the Center for Research in Vascular Biology in Dublin, Ireland, has grown EPCs in culture and shown that they make a variety of molecules useful to organ and tissue repair. For example, in 2008 Caplice published a paper in the journal Stem Cells and Development in workers in his lab showed that injection of EPCs into the hearts of pigs after a heart attack increased the mass of the heat muscle and that this increase in heart muscle was due to a molecule secreted by the EPCs called TGF-beta1 (see Doyle B, et al., Stem Cells Dev. 2008 Oct;17(5):941-51).

In other experiments, Caplice and his colleagues showed that the culture medium of EPCs grown in the laboratory contained a growth factor called “insulin-like growth factor-1” or IGF1. IGF1 is known to play an important role in the healing of the heart after a heart attack. Therefore, Caplice and his colleagues tried to determine if IGF1 was one of the main reasons EPCs heal the heart.

To test the efficacy of IGF1 from cultured EPCs, Caplice’s team grew EPCs in the laboratory and took the culture medium and tested the ability of this culture medium to stave off death in oxygen-starved heart muscle cells in culture. Sure enough, the EPC-conditioned culture medium prevented heart muscle cells from dying as a result of a lack of oxygen.

When they checked to see if IGF1 was present in the medium, it certainly was. IGF1 is known to induce the activity of a protein called “Akt” inside cells once they bind IGF1. The heart muscle cells clearly had activated their Akt proteins, thus strongly indicating the presence of IGF1 in the culture medium. Next they used an antibody that specifically binds to IGF1 and prevents it from binding to the surface of the heart muscle cells. When they added this antibody to the conditioned medium, it completely abrogated any effects of IGF1. This definitively demonstrates that IGF1 in the culture medium is responsible for its effects on heart muscle cells.

Will this conditioned medium work in a laboratory animal? The answer is yes. After inducing a heart attack, injection of the conditioned medium into the heart decreased the amount of cell death in the heart and increased the number of heart muscle cells in the infarct zone, and increased heart function when examined eight weeks after the heart attacks were induced. The density of blood vessels in the area of the infarct also increased as a result of injecting IGF1. All of these effects were abrogated by co-injection of the antibody that specifically binds IGF1.

From this study Caplice summarized that very small amounts of IGF1 (picogram quantities in fact) administered into the heart have potent acute and chronic beneficial effects when introduced into the heart after a heart attack.

These data are good enough grounds for proposing clinical studies. Hopefully we will see some in the near future.

Using Sleeping Stem Cells to Treat Aggressive Leukemias


British scientists have discovered that aggressive forms of leukemia (blood cancers) do not displace normal stem cells from the bone marrow, but instead, put them to sleep. If the normal stem cells are asleep, it implies that they can be awakened. This offers a new treatment strategy for acute myeloid leukemia or AML.

This work comes from researchers at Queen Mary, University of London with the support of Cancer Research UK’s London Research Institute.

In the United Kingdom, approximately 2,500 people are diagnosed with AML each year. The disease strikes young and old patients and the majority of patients die from AML.

In healthy patients, the bone marrow contains hematopoietic stem cells (HSCs) that divide to form either a common myeloid precursor (CMP) or a common lymphoid precursor (CLP) that differentiate into various kinds of white blood cells or red blood cells or lymphocytes. Individuals afflicted with AML, however, have bone marrow invaded by leukemic myeloid blood cells. Since red blood cells are derived from the myeloid lineage, AML causes red blood cell deficiencies (anemia), and the patient becomes tired, and is at risk for excessive bleeding. AML patients are also more vulnerable to infection those white blood cells that fight infections are not properly formed.

HSC differentiation2

David Taussig from the Barts Center Institute at Queen Mary, University of London said that the widely accepted explanation for these symptoms is that the cancerous stem cells displace or destroy the normal HSCs.

However, Taussig and his colleagues have found in bone marrow samples from mice and humans with AML contain plenty of normal HSCs. Thus, AML is not destroying or displacing the HSCs. Instead, the cancerous stem cells appear to be turning them off so that they cannot form HSCs. If Taussig and his coworkers and collaborators had determine how these leukemic myeloid blood cells are shutting off the normal HSCs, they might be able to design treatments to turn them back on.

Such a treatment strategy would increase the survival of AML patients. Only 40% of younger patients are cured of AML, and the cure rate for older patients in much lower. Current treatments that include chemotherapy and bone marrow transplants are not terribly successful with older patients.

Taussig’s group examined the levels of HSCs in the bone marrow of mice that had been transplanted with human leukemic myeloid cells from AML patients. They discovered that the numbers of HSCs stayed the same, but these same HSCs failed to transition through the developmental stages that result in the formation of new blood cells. When Taussig and his group examined bone marrow from 16 human AML patients, they discovered a very similar result.

Even though AML treatment has come a long way in the last ten years, there is still an urgent need for more effective treatments to improve long-term survival. This present study greatly advances our understanding of what’s going on in the bone marrow of AML patients. The future challenge is to turn this knowledge into treatments.

Under normal circumstances, stress on the body will boost HSC activity. For example, when the patient hemorrhages, the HSCs kick into action to produce more red blood cells that were lost during the bleed. However, the cancer cells in the bone marrow are somehow over-riding this compensatory mechanism and the next phase of this research will determine exactly how they do it.

Nanometer Scaffolds Regulate Neural Stem Cells


In the laboratory, stem cells can grow in liquid culture quite well in many cases, but this type of culture system, though convenient and rather inexpensive, does not recapitulate the milieu in which stem cells normally grow inside our bodies. Inside our bodies, stem cells stick to all kinds of surfaces and interact with and move over a host of complex molecules. Many of the molecules that stem cells contact have profound influences over their behaviors. Therefore, reconstituting or approximating these environments in the laboratory is important even though it is very difficult.

Fortunately nanotechnology is providing ways to build surfaces that approximate the kinds of surfaces stem cells encounter in our bodies. While this field is still in its infancy, stem cell-based nanotechnology may provide strategies to synthesize biologically relevant surfaces for stem cell growth, differentiation, and culture.

One recent contribution to this approach comes from Jihui Zhou and his team from the Fifth Hospital Affiliated to Qiqihar Medical University. Zhou and his co-workers prepared randomly oriented collagen nanofiber scaffolds by spinning them with an electronic device. Collagen is a long, fibrous protein that is found in tendons, ligaments, skin, basement membranes (the substratum upon which sheets of cells sit), bones, and is also abundant in cornea, blood vessels, cartilage, intervertebral disc, muscles, and the digestive tract. Collagen is extremely abundant in the human body; some 30% of all the proteins in our bodies are collagen. It is the main component in connective tissues.

There are many different types of collagen. Some types of collagen form fibers, while others for sheets. There are twenty-eight different types of collagen. Mutations in the genes that encode collagens cause several well-known genetic diseases. For example, mutations in collagen I cause osteogenesis imperfecta, the disease made famous by the Bruce Willis/Samuel T. Jackson movie, “Unbreakable.” Mutations in Collagen IV cause Alport syndrome, and mutations in either collagen III or V cause Ehlers-Danlos Syndrome.

Wen cells make fibrous collagen, they weave three collagen polypeptides together to form a triple helix protein that is also heavily crosslinked. This gives collagen its tremendous tensile strength.

Collagen fibers
Collagen fibers

In this experiment, electronic spinning technology made the collagen fibers and these fibers had a high swelling ratio when placed in water, high pore size, and very good mechanical properties.

Zhou grew neural stem cells from spinal cord on these nanofiber scaffolds and the proliferation of the neural stem cells was enhanced as was cell survival. Those genes that increase cell proliferation (cyclin D1 and cyclin-dependent kinase 2) were increased, as was those genes that prevent cells from dying (Bcl-2). Likewise, the expression of genes that cause cells to die (caspase-3 and Bax) decreased.

Thus novel nanofiber scaffolds could promote the proliferation of spinal cord-derived neural stem cells and inhibit programmed cell death without inducing differentiation of the stem cells. These scaffolds do this by inducing the expression of proliferation- and survival-promoting genes.

Using Human Induced Pluripotent Stem Cells to Study Diamond Blackfan Anemia


Diamond-Blackfan Anemia or DBA results from mutations in a gene on chromosome 19 (in most cases). Mutations in the ribosomal protein S19 affects the ability of blood cells to make protein and causes low numbers of red blood cells. DBA patients are dependent on blood transfusions, but some are cured, to some extent at least, by bone marrow transplants. Unfortunately, some DBA patients have severe side effects from bone marrow transplants, which means that bone marrow transplants are not a panacea for all DBA patients.

Fortunately, Michell J. Weiss and his colleagues at the Children’s Hospital of the Philadelphia (CHOP) have used human induced pluripotent stem cells (iPSCs) to study DBA at the molecular level and even develop the beginnings of a cure for DBA patients. Weiss collaborated with Monica Bessler, Philip Mason, and Deborah French, all of whom work at CHOP.

Remember that red blood cells are made inside the bone marrow of the patient by hematopoietic stem cells (HSCs). HSCs divide to renew themselves, and to produce a daughter cell that will differentiate into one of several different types of blood cells. As a kind of gee-wiz number, a healthy adult person will produce approximately 10[11]–10[12] (100 billion to 1 trillion) new blood cells are produced daily in order to maintain steady state levels in the peripheral circulation.

In DBA patients, the bone marrow is empty of red blood cells. In order to get a better idea why, Weiss and his team isolated fibroblasts from the skin of DBA patients, and used genetic engineering techniques to convert them into iPSCs. When Weiss and his group tried to differentiate these iPSCs derived from DBA patients into red blood cells, they were not able to make normal red blood cells. However, Weiss and his colleagues used different genetic engineering techniques to fix the mutation in these iPSCs. After fixing the mutation, these cells could be differentiated into red blood cells. This experiment showed that it is possible to repair a patient’s defective cells.

This is a proof-of-principle experiment and there are many hurdles to overcome before this type of experiment can be done in the clinic to DBA patients. However, these iPSCs can play a vital role in deciphering some of the mysteries surrounding this disease. For example, two family members may have exactly the same mutation, but only one of them shows the disease whereas the other does not. Since iPSCs are specific to the patient from whom they were made, Weiss and his group hope to compare the molecular differences between them and understand the difference in expression of this disease.

Also, these cells offer a long-lasting model system for testing new drugs or gene modifications that may offer new treatments that are personalized to individual patients.

Weiss and his research group used this same technology to test drugs for the often aggressive childhood leukemia, JMML or Juvenile Myelomonocytic Leukemia. Once again, iPSCs were made from JMML patients and differentiated into myeloid cells, which divided uncontrollably just as the original myeloid cells from JMML patients.

Weiss and his colleagues used these cells to test two drugs, both of which are active against JMML. One of them is an inhibitor of the MEK kinase that was quite active against these cells. This illustrates how iPSCs can be used to test personalized treatment regimes for patients.

The stem cell core facility at CHOP is also in the process of making iPCS lines for several inherited diseases: dyskeratosis congenita, congenital dyserythropoietic anemia, thrombocytopenia absent radii, Glanzmann’s thrombasthenia, and Hermansku-Pudlak syndrome.

The even longer term goal is the use these lines to specifically study the behavior of such cells in culture and under certain conditions, test various drugs on them, and to develop treatment strategies on them as well.

Long-Lasting Blood Vessels Regenerated from Reprogrammed Human Cells


Researchers from Massachusetts General Hospital (MGH) in Boston, MA have used human induced pluripotent stem cells to make vascular precursor cells to produce functional blood vessels that lasted as long as nine months.

Rakesh Jain, director of the Steele Laboratory for Tumor Biology at MGH and his team derived human induced pluripotent stem cells (iPSCs) from adult cells of two different groups of patients. One group of individuals were healthy and the second group had type 1 diabetes. Remember that iPSCs are derived from adult cells through the process of genetic engineering. By introducing specific genes into these adult cells, the adult cells are de-differentiated into an embryonic-like state. The embryonic-like cells can be cultured and grown into a cell line that can be differentiated into various cell types in the laboratory. These differentiated cells types can then be transplanted into laboratory animals for regenerative purposes.

“The discovery of ways to bring mature cells back to a ‘stem-like’ state that ca differentiate into many different types of tissue has brought enormous potential to the field of cell-based regenerative medicine, but the challenge of deriving functional cells from these iPSCs still remains,” said Rakesh. “our team has developed an efficient method to generate vascular precursor cells from human iPSCs and used them to create networks of engineered blood vessels in living mice.”

The ability to regenerate or repair blood vessels could be a coup for regenerative medicine. Cardiovascular disease, for example, continues to be the number one cause of death in the United States and other conditions caused by blood vessel damage (e.g., the vascular complications of diabetes) continue to cause a great deal of morbidity and mortality each year. Also, providing a blood supply to newly generated tissue remains one of the greatest barriers to building solid organs through tissue engineering.

Some studies have used iPSCs to build endothelial cells (the cells that line blood vessels), and connective tissue cells that provide structural support. These cells, unfortunately, tend to not produce long-lasting vessels once they are introduced into laboratory animals. A collaborator with Jain, Dai Fukumura, stated, “The biggest challenge we faced during the early phase of this project was establishing a reliable protocol to generate endothelial cell lines that produced great quantities or precursor cells that could generate durable blood vessels.”

Jain’s group adapted a protocol that was originally designed to derived endothelial cells from human embryonic stem cells. They isolated cells based on the presence of more than one cell surface protein that marked out vascular potential. Then they expanded this population of cells using a culture system developed with embryonic stem cells that had been differentiated into endothelial cells. Further experiments confirmed that only those iPSCs that expressed all three cell surface proteins on their surfaces had the potential to form blood vessels.

To test the capacity of those cells to generate blood vessels, they implanted them onto the surface of the brain of mice in combination with mesenchymal precursors that generate smooth muscles that surround blood vessels.

Within two weeks after transplantation, the implanted cells had formed entire networks of blood vessels with blood flowing through them that has also fused with the already existing blood vessels. These engineered blood vessels continued to function for as long as 280 days in the living animal. Implantation under the skin, however, was a different story. It took 5 times the number of cells to get them to form blood vessels and they were short-lived. This is similar to the results observed in other studies.

Because type 1 diabetes can ravage blood vessels, Jain’s team made iPSCs from patients with type 1 diabetes to determine if iPSCs from such patients would generate functional blood vessels. Similarly to the cells generated from healthy individuals, vascular precursors generated from type 1 diabetics were able to form long-lasting blood vessels. However, these same cell lines showed variability in their ability to form vascular precursors. The reason for this is uncertain.

Rekha Samuel, one of the lead authors of this paper, said “The potential applications of iPSC-generated blood vessels are broad – from repairing damaged vessels supplying the heart or brain to preventing the need to amputate limbs because of the vascular complications of diabetes. But first we need to deal with such challenges as the variability of iPSC lines and the long-term safety issues involved in the use of these cells, which are being addressed by researchers around the world. We need better ways of engineering the specific type of endothelial cell needed for specific organs and functions.”

StemCells, Inc. Presents Two-Year Pelizaeus-Merzbacher Disease Data Suggesting Increased Myelination of Nerves


StemCells, Inc. has presented data of their two-year follow-up of patients with Pelizaeus-Merzbacher disease (PMD) who were treated with the Company’s proprietary HuCNS-SC cells. HuCNS-SC is a purified human neural stem cell line, and these neural stem cells can differentiate into a very wide variety of cell types of the nervous system, including different types of neurons and glial cells.

PMD is an inherited condition that involves the central nervous system. It is one of a group of genetic disorders called “leukodystrophies,” which all have in common degeneration of myelin. Myelin covers nerves and protects them, and promotes the efficient transmission of nerve impulses. PMD is caused by an inability to synthesize myelin (dysmyelination). Consequently, PMD individuals have impaired language and memory abilities, and poor coordination. Typically, motor skills are more severely affected than intellectual function; motor skills development tends to occur more slowly and usually stops in a person’s teens, followed by gradual deterioration.

Since PMD is an X-linked genetic disease, it is far more prevalent in males, and an estimated 1 in 200,000 to 500,000 males in the United States have PMD, but it rarely affects females.

Mutations in the PLP1 gene usually cause PMD. The PLP1 gene encodes proteolipid protein 1 and a modified version (isoform) of proteolipid protein 1, called DM20. Proteolipid protein 1 and DM20 are primarily in the central nervous system and are the main proteins found in myelin. The absence of proteolipid protein 1 and DM20 can cause dysmyelination, which impairs nervous system function and causes the signs and symptoms of Pelizaeus-Merzbacher disease.

In this trial, PMD patients were injected with HuCNS-SC cells. In this report, magnetic resonance imaging (MRI) studies were used to determine the amount of myelin that insulated particular nerves in the central nervous system. MRI examination of the patients revealed evidence of myelination that is more pronounced that what was seen in the one year post-transplantation exams. The gains in neurological function reported after one year were maintained, and there were no safety concerns.

Patients with PMD have insufficient myelin in the brain and their prognosis is very poor, usually resulting in progressive loss of neurological function and death. The neurological and MRI changes suggest a departure from the natural history of the disease and may represent signals of a positive clinical effect. These data were presented by Stephen Huhn, MD, FACS, FAAP, Vice President, CNS Clinical Research at StemCells, Inc., at the 2013 Pelizaeus-Merzbacher Disease Symposium and Health Fair being held at Nemours/Alfred I. duPont Children’s Hospital in Wilmington, Delaware.

“We are encouraged that the MRI data continue to indicate new and durable myelination related to the transplanted cells and that the data is even stronger after two years compared to one year,” said Dr. Huhn. “Even in the context of a small open-label study, these MRI results, measured at time points long after transplantation, make an even more convincing case that the HuCNS-SC cells are biologically active and that their effect is measurable, sustainable, and progressive. Our challenge now is to reach agreement with the FDA on how best to correlate changes in MRI with meaningful clinical benefit, as this will be a critical step in determining a viable registration pathway for PMD.”

The Company’s Phase I trial was conducted at the University of California, San Francisco, and enrolled four patients with “connatal” PMD, which is the most severe form of PMD. All four patients were transplanted with HuCNS-SC cells, and followed for twelve months after transplantation. During the year of post-transplantation observation, the patients underwent intensive neurological and MRI assessments at regular intervals. Since none of the patients experienced any serious or long-lasting side effects from the transplantation, the results of this Phase I trial indicate a favorable safety profile for the HuCNS-SC cells and the transplantation procedure.

Data from MRI analyses showed changes consistent with increased myelination in the region of the transplantation. This increased myelination progressed over time and persisted after the withdrawal of immunosuppressive drugs nine months after transplantation. These results support the conclusion of durable cell engraftment and donor cell-derived myelin in the transplanted patients’ brains. Also, routine neurological exams revealed small but consistent and measurable gains in motor and/or cognitive function in three of the four patients. The fourth patient remained clinically stable. These Phase I trial results were published in October 2012 in Science Translational Medicine, the peer review journal of the American Association for the Advancement of Science. Upon completion of the Phase I trial, all four patients were enrolled into a long-term follow-up study, which is designed to follow the patients for four more years.

A Step Towards Making Customized Blood Vessels


Johns Hopkins University scientists have directed stem cells to form networks of new blood vessels, and successfully transplanted those laboratory-made blood vessels into laboratory mice.

The stem cells in this experiment were made by reprogramming ordinary cells. Thus this new technique could potentially be used to make blood vessels that are genetically matched to individual patients and have a very low chance of being rejected by the patient’s immune system.

“In demonstrating the ability to rebuild a microvascular bed in a clinically relevant manner, we have made an important step toward the construction of blood vessels for therapeutic use,” said Sharon Gerecht, associate professor in the Johns Hopkins University Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and Institute for NanoBioTechnology. “Our findings could yield more effective treatments for patients afflicted with burns, diabetic complications and other conditions in which vasculature function is compromised.”

Gerecht’s research group and others have previously grown blood vessels in the laboratory using stem cells, but there are problems with using these blood vessels in human patients. For example, in a paper published by Gerecht’s group in Stem Cells Translational Medicine earlier this year (Stem Cells Trans Med April 2013 vol. 2 no. 4 297-306), ECFCs or endothelial colony-forming cells from human umbilical cords were grown and used to make networks of blood vessels in culture. Those blood vessels were then embedded in blocks of “hyaluronic acid.” Hyaluronic acid is a component of human connective tissue, and when the ECFCs were embedded into it, they were then placed on the skin of mice that had received third-degree burns. On day 3 following transplantation, white blood cells called macrophages degraded the hyaluronic acid gel rather quickly. Between days 5–7, the mouse’s blood vessels infiltrated the implant and connected with the human blood vessels in the wound area. The growth of the human blood vessels peaked at day 7 and then decreased by the end of the proliferation stage. As the wound reached the remodeling period during the second week after transplantation, the blood vessels, including the transplanted human vessels generally regressed, and a few microvessels, wrapped by mouse smooth muscle cells and with a vessel area less than 200 square micrometers (including the human ones), remained in the healed wound.

This is a fascinating experiment, but making blood vessels this way is a heck of a lot of work, and even though the umbilical cord ECFCs are less likely to be rejected by the immune system of the patient, the chances of immune system rejection are still present. is there a better way?

In this current study, Gerecht and her team tried to streamline the new growth process. Where other experiments used chemical cues to differentiate stem cells into the desired cell type, Sravanti Kusuma in Gerecht’s laboratory devised a way to instruct stem cells to exclusively form the two cell types required for blood vessel construction (smooth muscle cells and endothelial cells).

According to Kusuma, “It makes the process quicker and more robust if you don’t have to sort through a lot of cells you don’t need to find the ones you do, or grow two batches of cells,”

Derivation of EVCs from hPSCs. (A) Schema for self-assembled vascular derivatives. (i) hPSCs are differentiated toward EVCs that can be matured into functional ECs and pericytes. (ii) Derived EVCs are embedded within a synthetic HA matrix that facilitates self-organization into vascular networks. (B) VEcad expression in day 12 differentiated hiPSC-MR31 and hESC-H9 cell lines comparing the three differentiation conditions tested (flow cytometry analysis; n = 3). (C and D) Flow cytometry plots (n = 3) of EVC derivatives assessing the expression of pluripotent markers TRA-1-60 and TRA-1-81 (C) and CD105 and CD146 (D). (E) EVC differentiation efficiency from hPSC lines per 1 million input hPSCs. (F) Flow cytometry plots (n = 3) of EVC derivatives assessing expression of VEcad double-labeled with CD105 or PDGFRβ. (Left) Isotype controls. (G) Quantitative RT-PCR analysis of EC and perivascular marker expression by EVCs and sorted VEcad+ and VEcad− cells. # denotes not detected. Data are normalized to EVCs of each specific hPSC type. (H) Flow cytometry plots (n = 3) of hematopoietic marker CD45 (hiPSC-BC1). (I) Quantitative RT-PCR of H9-EVCs for the expression of SMMHC and peripherin, compared with undifferentiated cells (d0) and mature derivatives (13, 37). Isotype controls for flow cytometry are in gray. Flow cytometry results shown are typical of the independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001
Derivation of EVCs from hPSCs. (A) Schema for self-assembled vascular derivatives. (i) hPSCs are differentiated toward EVCs that can be matured into functional ECs and pericytes. (ii) Derived EVCs are embedded within a synthetic HA matrix that facilitates self-organization into vascular networks. (B) VEcad expression in day 12 differentiated hiPSC-MR31 and hESC-H9 cell lines comparing the three differentiation conditions tested (flow cytometry analysis; n = 3). (C and D) Flow cytometry plots (n = 3) of EVC derivatives assessing the expression of pluripotent markers TRA-1-60 and TRA-1-81 (C) and CD105 and CD146 (D). (E) EVC differentiation efficiency from hPSC lines per 1 million input hPSCs. (F) Flow cytometry plots (n = 3) of EVC derivatives assessing expression of VEcad double-labeled with CD105 or PDGFRβ. (Left) Isotype controls. (G) Quantitative RT-PCR analysis of EC and perivascular marker expression by EVCs and sorted VEcad+ and VEcad− cells. # denotes not detected. Data are normalized to EVCs of each specific hPSC type. (H) Flow cytometry plots (n = 3) of hematopoietic marker CD45 (hiPSC-BC1). (I) Quantitative RT-PCR of H9-EVCs for the expression of SMMHC and peripherin, compared with undifferentiated cells (d0) and mature derivatives (13, 37). Isotype controls for flow cytometry are in gray. Flow cytometry results shown are typical of the independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001

Another difference from previous experiments was the use of induced pluripotent stem cells rather than bone marrow-derived endothelial precursor cells or umbilical cord-derived endothelial colony-forming cells. Gerecht’s team collaborated with Linzhao Cheng from the Institute for Cell Engineering to co-opt her expertise with induced pluripotent stem cells (iPSCs), which are made from adult cells and are de-differentiated through genetic engineering techniques to become embryonic-like stem cells.

Cheng said that this experiment is “an elegant use of human induced pluripotent stem cells that can form multiple cell types within one kind of tissue or organ and have the same genetic background [as the patient].” Cheng continued” “In addition to being able to form blood cells and neural cells as previously shown, blood-derived human induced pluripotent stem cells can also form multiple types of vascular network cells.”

To grow blood vessels, Cheng, Gerecht and others placed the stem cells into a scaffolding made of hydrogel (hyaluronic acid and water). This hydrogel was full of chemical cues that directed the cells to differentiate in to endothelial and smooth muscle cells and form a network of blood vessels. This constitutes the first time human blood vessels had been made from human pluripotent stem cells in a synthetic material.

Self-assembly of EVCs to multicellular networks in a 3D matrix. (A) Network formation from BC1-EVCs in collagen (i) and HA hydrogels (ii). (B) Sorted VEcad+ and VEcad− cells encapsulated within collagen gels were unable to form networks. (Insert) Example of a cell with typical stellate morphology, with phalloidin in green and nuclei in blue. (Scale bars: 100 μm.) (C) Vacuole formation was observed after one day as evidenced by light microscopy (LM) (i) and confocal images (ii) of vacuole vital stain, FM4-64, in red and nuclei in blue. (Scale bar: 10 μm.) (D) On day 2, network formation with enlarged lumen (i and ii) and cell sprouting (iii and iv) were visualized by LM images (i and iii) and confocal images (ii and iv) of FM4-64 in red and nuclei in blue. (Scale bars: 10 μm in i and iii; 20 μm in ii; 50 μm in iv.) (E) On day 3, complex networks were observed with enlarged and open lumen, as indicated by confocal z-stacks and orthogonal sections of FM4-64 in red and nuclei in blue. (Scale bar: 20 μm.) (F) After 3 d, multilayered structures were also detected, as demonstrated by a 3D projection image of NG2 (green), phalloidin (red), and nuclei (blue) showing NG2+ pericytes integrated onto hollow structures. Images shown are typical of the independent experiment. (Scale bars: 50 µm.)
Self-assembly of EVCs to multicellular networks in a 3D matrix. (A) Network formation from BC1-EVCs in collagen (i) and HA hydrogels (ii). (B) Sorted VEcad+ and VEcad− cells encapsulated within collagen gels were unable to form networks. (Insert) Example of a cell with typical stellate morphology, with phalloidin in green and nuclei in blue. (Scale bars: 100 μm.) (C) Vacuole formation was observed after one day as evidenced by light microscopy (LM) (i) and confocal images (ii) of vacuole vital stain, FM4-64, in red and nuclei in blue. (Scale bar: 10 μm.) (D) On day 2, network formation with enlarged lumen (i and ii) and cell sprouting (iii and iv) were visualized by LM images (i and iii) and confocal images (ii and iv) of FM4-64 in red and nuclei in blue. (Scale bars: 10 μm in i and iii; 20 μm in ii; 50 μm in iv.) (E) On day 3, complex networks were observed with enlarged and open lumen, as indicated by confocal z-stacks and orthogonal sections of FM4-64 in red and nuclei in blue. (Scale bar: 20 μm.) (F) After 3 d, multilayered structures were also detected, as demonstrated by a 3D projection image of NG2 (green), phalloidin (red), and nuclei (blue) showing NG2+ pericytes integrated onto hollow structures. Images shown are typical of the independent experiment. (Scale bars: 50 µm.)

While these networks of blood vessels looked like the real thing, would they work within a living creature? The answer that question, Gerecht and her group transplanted them into mice. After two weeks the lab-grown blood vessels had integrated with the mouse’s own blood vessels and the hydrogel had dissolved and been degraded. “That these vessels survive and function inside a living animal is a crucial step in getting them to medical application,” Kusama said.

An important follow-up to these experiments is to examine the three-dimensional structure of these blood vessels to determine if truly have all the characteristics of human blood vessels that can deliver blood to damaged tissues and help those tissues recover from injury or trauma.

New Pluripotent Stem Cell Production Protein Identified


Large scale production of stem cells requires an intimate knowledge of the genetic networks that convert adult cells into induced pluripotent stem cells (iPSCs). The original protocol established by Shinya Yamanaka and his colleagues used four genes all clustered on a retrovirus vector, but there are safer, more technically subtle ways to make iPSCs.

Because iPSCs are made from a patient’s own cells, they are less likely to be rejected by the patient’s immune system. They also show tremendous developmental flexibility, they can potentially be differentiated into any adult cell type in the body.  The problem with iPSCs comes from the difficulty of making large quantities of them in a reasonable amount of time.  However, a new research publication from scientists at the University of Toronto, the University for Sick Children and Mount Sinai Hospital, in collaboration with colleagues from the United States and Portugal, identifies specific proteins that play central roles in controlling pluripotency that may mean a potential breakthrough in producing iPSCs.

Researchers discovered these proteins by using something called the “splicing code.”  Benjamin Blencowe discovered the splicing code a few years ago.  “The mechanisms that control embryonic stem cell pluripotency have remained a mystery for some time.  However, what Dr. Blencowe and the research team found is that the proteins identified by our splicing code can activate or deactivate stem cell pluripotency,” said Brendan J. Frey, from the University of Toronto Departments of Electrical Engineering and Medicine, who published with Benjamin Blencowe the paper that deciphered this splicing code (see Nature 2010 465: 53-59).  While a complete recipe for producing iPSCs may not be available yet, it is beginning to look more likely, according to Frey.

In this paper, Blencowe and his collaborators identified two proteins known as muscleblind-like RNA binding proteins, or MBNL1 and MBNL2.  These proteins are conserved and direct negative regulators of a large program of cassette exon alternative splicing events that are differentially regulated between embryonic stem cells and other cell types.

RNA splicing occurs in plant, animal, fungal, and protist cells (only very, very rarely in bacteria), and involves the removal of segments of primary RNA transcripts.  When RNA molecules are transcribed in eukaryotic cells, they are engaged by cellular machinery called the RNA spliceosome.  The RNA spliceosome removes segments known as “introns” and the excised introns are degraded and the remaining RNA segments, which are known as “exons, are ligated together to form a mature messenger RNA.

mRNA splicing

Some introns are removed from primary RNA transcripts by all cells, but others are removed in some cells but not others.  This phenomenon is known “alternative splicing” and it is responsible for the differential regulation of particular genes.

alternative_splicing

Alternative splicing is mediated by sequences called splicing enhancers and splicing silencers that are six to either nucleotides long and bind proteins that either induce or repress alternative splicing in those cells that express the proteins that bind these splicing enhancers or silencers.

Alternative RNA splicing mechanism

MBNL is one of these proteins that bind to RNA splicing silencers.  If the quantity of MBNL proteins in differentiated cells is decreased, then these cells switch to an embryonic stem cell-like alternative splicing pattern for approximately half of their genes.  Conversely, overexpression of MBNL proteins in ES cells promotes differentiated-cell-like alternative splicing patterns.  Among the MBNL-regulated events is an ES-cell-specific alternative splicing switch in a protein-coding gene called the forkhead family transcription factor FOXP1.  FOXP1 controls pluripotency, and consistent with a central and negative regulatory role for MBNL proteins in pluripotency, knockdown of MBNL significantly enhances the expression of key pluripotency genes and the formation of induced pluripotent stem cells during somatic cell reprogramming.

Thus MBNL proteins should be one of the main targets for the mass production of iPSCs.

Breast Cancer Clinical Trial Targets Cancer Stem Cells


Even though my previous posts about cancer stem cells have generated very little interest, understanding cancer as a stem cell-based disease has profound implications for how we treat cancer. If the vast majority of the cells in a tumor are slow-growing and not dangerous but only a small minority of the cells are rapidly growing and providing the growth the most of the tumor, then treatments that shave off large numbers of cells might shrink the tumor, but not solve the problem, because the cancer stem cells that are supplying the tumor are still there. However, if the treatment attacks the cancer stem cells specifically, then the tumor’s cell supply is cut off and the tumor will wither and die.

In the case of breast cancer, the tumors return after treatment and spread to other parts of the body because radiation and current chemotherapy treatments do not kill the cancer stem cells.

This premise constitutes the foundation of a clinical trial operating from the University of Michigan Comprehensive Cancer Center and two other sites. This clinical trial will examine a drug that specifically attacks breast cancer stem cells. The drug, reparixin, will be used in combination with standard chemotherapy.

Dr. Anne Schott, an associate professor of internal medicine at the University of Michigan and principal investigator of this clinical trial, said: “This is one of only a few trials testing stem cell directed therapies in combination with chemotherapy in breast cancer. Combining chemotherapy in breast cancer has the potential to lengthen remission for women with advanced breast cancer.”

Cancer stem cells are the small number of cells in a tumor that fuel its growth and are responsible for metastasis of the tumor. This phase 1b study will test reparixin, which is given orally, with a drug called paclitaxel in women who have HER2-negative metastatic breast cancer. This study is primarily designed to test how well patients tolerate this particular drug combination. However, researchers will also examine how well reparixin appears to affect various cancer stem cells indicators and signs of inflammation. The study will also examine how well this drug combination controls the cancer and affects patient survival.

This clinical trial emerged from laboratory work at the University of Michigan that showed that breast cancer stem cells expressed a receptor on their cell surfaces called CXCR1. CXCR1 triggers the growth of cancer stem cells in response to inflammation and tissue damage. Adding reparixin to cultured cancer stem cells killed them and reparixin works by blocking CXCR1.

Mice treated with reparixin or the combination of reparixin and paclitaxel had significantly fewer (dramatically actually) cancer stem cells that those treated with paclitaxel alone. Also, riparixin-treated mice developed significantly fewer metastases that mice treated with chemotherapy alone (see Ginestier C,, et al., J Clin Invest. 2010, 120(2):485-97).

Clinical Study Evaluates Healing of Knee Cartilage With Stem Cells


The biotechnology company InGeneron will test its patented Transpose RT system in a clinical study that examined the ability of regenerative cells from a patient’s own fat to enhance cartilage healing after knee surgery.

Qualified patients are being recruited through the Fondren Orthopedic Group in Houston. According to the American Orthopedic Society for Sports Medicine, over 4 million knee arthroscopies are performed worldwide each year. Damaged knee cartilage is very difficult to treat and can lead to chronic pain and long-term disability.

Robert Burke, who is serving as the principal investigator of this clinical study, is an orthopedic surgeon with the Fondren Orthopedic Group in Houston. Burke thinks that stem cells taken from a patient’s own fat may enhance cartilage healing. He studied adding patient-derived regenerative cells to the knee during arthroscopic surgery for particular patients, and compared them to patients who had arthroscopic surgery without added fat-derived stem cells.

Arthroscopic surgery is a common procedure is commonly used to treat damaged cartilage, and the patients who had received arthroscopic surgery were randomly chose to either receive fat-derived stem cells or not receive them. Burke, will then monitor these patients for the next 12 months after surgery to determine if the added cells improved cartilage healing.

According to Burke, “Articular cartilage, the smooth surface covering the joints at the ends of bones, has no good way of healing on its own. The body doesn’t create enough new cartilage of the same type to repair the damage.” Better treatments would use various techniques to help the body make new cartilage.

“Stem cells and other regenerative cells that we can obtain fat have the potential to do that,” said Burke. Such regenerative cells can divide and mature to form several types of cells and tissues. and are found in multiple places in the body. Fat that lies just below the skin is one of the easiest places to obtain stem cells.

The InGeneron Transpose RT System uses a small amount of fat, which is removed and processed to separate out the regenerative cells. The separated adipose tissue-derived mesenchymal stem cells are then immediately placed into the area of damaged cartilage during knee surgery. Once in the knee, these cells may divide to make new cartilage cells.

This kind of biological activity has been seen in laboratory studies and veterinary medicine. However, Burke’s study will be one of the first to test the technology in humans for treating cartilage damage. Like other types of stem cell-based therapies, the treatment is not currently licensed for human use in the United States but it is registered in Europe, Mexico, and other countries. Following the Texas Medical Board’s rules about the use of stem cells for treatment, this study is under the supervision of the research review board at Texas Orthopedic Hospital, where all of the patients will undergo surgeries.

This is a two-year study.

Multipotent Adult Progenitor Cells Prevent Rejection of Transplanted Tissue


Solid organ transplantation is a procedure that has saved untold millions of lives. Unfortunately, the tendency for an organ to be rejected by the immune system of the organ recipient is a formidable problem that is addressed in two ways. One of these is through tissue matching of the organ to the recipient. The other is through the use of immunosuppressive drugs that suppress the immune system. Neither one of these strategies is without caveats.

Tissue typing begins with a blood test to determine the organ recipient’s blood type. If the organ contains a blood type that is incompatible with the immune system of the organ recipient, the result will be catastrophic. Hyperacute rejection is the name given to organ rejection that occurs minutes to hours after the organ was transplanted. Hyperacute rejection occurs because the recipient has pre-existing antibodies in their body that recognizes and begins to destroy the graft. These antibodies can result from prior blood transfusions, multiple pregnancies, prior transplantation, or xenografts against which humans already have antibodies. Massive blood clotting within the capillaries of the organ clog the blood vessels and prevent perfusion of the graft with blood. The organ must come out or the patient will die.

Human cells have on their surfaces particular proteins that are encoded by genes located on the short arm of chromosome 6 called the major histocompatibility complex or MHC. the MHC genes encode human leukocyte antigens or HLAs. HLA proteins are extremely variable from person to person, and this seems to be the case because the more variation we have in our HLA proteins, the better job the immune system does recognizing foreign invaders.

Each individual expresses MHC genes from each chromosome. Therefore, your cells contain a mosaic of surface proteins, some of which are encoded by the HLAs encoded by the chromosome you inherited from your father and others of which are encoded by the chromosome your inherited from your mother.

The MHC molecules are divided into 2 classes. Class I molecules are normally expressed on all nucleated cells, but class II molecules are expressed only on the so-called “professional antigen-presenting cells” or APCs. APCs include cells that have names like dendritic cells, activated macrophages, and B cells. T lymphocytes only recognize foreign substances when they are bound to an MHC protein. Class I molecules present antigens from within the cell, which includes bits from viruses, tumors and things like that. Class II molecules present extracellular antigens such as extracellular bacteria and so on to a subclass of T cells called T helper cells, which express a molecule called “CD4” on their cell surface.

MHC-Class-I-Topology_3mhc_class2

All this might seem very confusing, but it is vital to ensuring that the organ is properly received by the organ recipient. Some types of MHC are very different and will elicit robust immune responses against them, but others are not as different and can be rather well tolerated. How does the doctor which are which? Through three tests: 1) Blood type is the first one. If this does not match, you are out of luck; 2) lymphocytotoxicity assay in which blood from a patient is tested to determine if it reacts with lymphocytes from the blood of the donor. A positive crossmatch is a contraindication to transplantation because of the risk of hyperacute rejection. This is used mainly in kidney transplantation; 3) Panel-reactive antibody (PRA) screens in which the the serum of a patient is screened for antibodies against the lymphocytes from the donor. The presence of such antibodies is contraindicated for transplantation. Finally, there is a test that is not used a great called the mixed lymphocyte reaction test that uses lymphocytes from the blood of the organ donor and the organ recipient to see if they activate one another. This test takes a long time and can be difficult to interpret.

Once the patient receives the transplant, they are usually put on immunosuppressive drugs. These drugs include cyclosporine, tacrolimus, sirolimus, mycophenolate, and azathioprine. Each of these drugs has a boatload of side effects that range from hair loss, diabetes mellitus, nerve problems, increased risk of illness and tumors, and so on. None of these side effects are desirable, especially since the drug must be taken for the rest of your life after you receive the transplant.

Enter a new paper from University Hospital in Regensburg, Germany from the laboratory of Marc Dahkle that used particular stem cells from bone marrow to induce toleration of grafted heart tissue in laboratory animals without any drugs. This paper was published in Stem Cells Translational Medicine and is potentially landmark in what it shows.

In this paper, Dahkle and his colleagues used stem cells from the bone marrow known as multipotential adult progenitor cells or MAPCs. MAPCs have been thought to be a subtype of mesenchymal stem cell in the bone marrow because they have several cell surface markers in common. However, there are some subtle differences between these two types of cells. First of all, the MAPCs are larger than their mesenchymal stem cell counterparts. Secondly, MAPCs can be cultured more long-term, which increases the attractiveness of these cells for therapeutic purposes.

In this paper, the Dahkle group transplanted heart tissue from two unrelated strains of rats. Four days before the transplantation, the donor rats received an infusion of MAPCs into their tail veins. There were a whole slew of control rats that were used as well, but the upshot of all this is that the rats that received the MAPCs before the transplantation plus a very low dose of the immunosuppressive drug mycophenolate did not show any signs of rejection of the transplanted heart tissue. If that wasn’t enough, when the transplanted heart tissue was then extirpated and re-transplanted into another rat, those grafts that came from MAPC-treated rats survived without any drugs, but those that came from non-MAPC-treated rats did not.

Because control experiments showed that the rats treated with cyclosporine did not reject their grafts, Dahkle and others used this system to determine the mechanism by which MAPCs prevent immune rejection of the grafted tissue. They discovered that the MAPCs seem to work though a white blood cell called a macrophage. Somehow, the MAPCs signal to the macrophages to suppress rejection of the graft. If a drug (clodronate) that obliterates the macrophages was given to the rats with the MAPCs, the stem cells were unable to suppress the immunological rejection of the graft.

In this paper, the authors conclude that “When these data are taken together, our current approach advances the concept of cell-based immunomodulation in solid organ transplantation by demonstrating that third-party, adherent, adult stem cells from the bone marrow are capable of acting as a universal cell product that mediates long-term survival of fully allogeneic organ grafts.” Revolutionary is a good word for this findings of this paper.  Hopefully, further pre-clinical trials will eventually give way to clinical trials in human patients that will allow human patients to have their lives saved by an organ transplant without the curse of taking immunosuppressive drugs for the rest of their lives.

Biowire Technology Matures Stem Cell-Derived Heart Cells


Heart research has taken yet another step forward with the invention of a new technique for maturing human heart cells in culture.

Researchers from the University of Toronto have created a fast and reliable method of creating mature human heart muscle patches in a variety of sizes. This technique applies pulsed electric current to the cells that mimics the heart rate of fetal humans.

Milica Radisic, an associate professor at the Institute of Biomaterials and Biomedical Engineering (IBBME), explained the significance of her new discovery: “You cannot obtain human cardiomyocytes (heart cells) from human patients.” However heart cells are vitally important for testing the safety and efficacy of heart drugs, and because human heart muscle cells do not normally divide robustly and form large swaths of heart tissue in culture, finding enough human heart tissue for pharmacological and toxicological test tests has been rather difficult. Tho circumvent this problem, researchers have been using heart muscle cells made from induced pluripotent stem cells (iPSCs). Unfortunately, once these cells are differentiated into heart muscle cells, they form highly immature heart muscle cells that beat too fast to work as a proper model system for adult human heart cells.

As Radisic put it: “The question is, if you want to test drugs or treat adult patients, do you want to use cells that look and function like fetal cardiomyocytes? Can we mature these cells to become more like adult cells?”

Radisic and her co-workers designed the “biowire” culture system for stem cell-derived cardiomyocytes. This system can mature heart muscle cells in culture in a reliable and reproducible manner.

The technique seeds human heart muscle cells along a silk suture, much like the kind used to sew up patients after surgery. The suture directs cells to grow along its length, after which they a treated to cycles of electric pulses. The biowire provides the pulses and acts like a stripped-down pacemaker. The biowire induces the heart muscle cells to increase in size and beat like more mature heart tissue. However the manner in shich the pulses are applied turns out to be very important. Radisic and her team discovered that if the cells were ramped up from zero pulses to 180 pulses per minute to 360 beats per minute, it mimicked the conditions that occur naturally in the developing heart. The fetal heart increases its heart rate prior to birth, and by ramping up the rate at which the pulses were delivered, Radisic and her team exposed the heart cells to the same kind of environment they would have experienced in the fetal heart.

“We found that pushing the cells to their limits over the course of a week derived the best effect,” said Radisic.

Growing the cells on sutures brings an added bonus: They can be sewn directly into a patient, which makes the biowires fully transplantable. Also, the cells can be grown on biodegradable sutures as well, which has practical implications for health care.

“With this discovery we can reduce the costs on the health care system by creating more accurate drug screening.” This discovery brings heart research one step closer to viable heart patches for replacing dead areas of the heart.

The paper’s first author, Sarah Nunes, said this: “One of the greatest challenges of tgransplanting these patches is getting the cells to survive, and for that they need blood vessels. Our next challenge is to put the vascularization together with cardiac cells.” Nunes is a cardiac and a vascular specialist.

Radisic enthusiastically labeled the new technique as a “game changer” in the field of cardiac medicine and it is a sign of how far the field has come in a very short time.

“In 2006 science saw the first derivation of induced pluripotent stem cells from mice. Now we can turn stem cells into cardiac cells and make relatively mature tissue from human samples, without ethical concerns.”

The vascularization part of this should be rather easy, since bone marrow-derived endothelial progenitor cells (EPCs) have been shown to make blood vessels in the heart. Putting these together with the heart patch should provide a winning combination

Inching toward human trials, but definitely making progress!!

Stem Cells Analyze the Cause and Treatment of Diabetes


A research group that is part of the New York Stem Cell Foundation or NYSCF has generated patient-specific beta cells (the cells that secrete insulin in the pancreas), and these cultured beta cells accurately recapitulate the features of maturity-onset diabetes of the young or MODY.

In this research, NYSCF scientists and researchers from the Naomi Berrie Diabetes Center of Columbia University used skin cells from MODY patients to produce induced pluripotent stem cells (iPSCs) that were differentiated in the culture dish to form insulin-secreting pancreatic beta cells (if that sounds like a lot of work that’s because it is).

Other laboratories have succeeded in generating beta cells from embryonic stem cells and iPSCs, but questions remain as to whether or not these cells accurately recapitulate genetically-acquired forms of diabetes mellitus.

Senior co-author of this study, Dieter Egli, a senior research fellow at NYSCF, said: “We focused on MODY, a form of diabetes that affects approximately one in 10,000 people. While patients and other models have yielded important clinical insights into this disease, we were particularly interested in its molecular aspects – how specific genes can affect responses to glucose by the beta cell.”

MODY is a genetically inherited form of diabetes mellitus, and the most common form of MODY, type 2, results from mutations in the glucokinase or GCK gene. Glucokinase is a liver-specific enzyme and it adds a phosphate group to sugar so that the sugar can be broken down to energy by means of a series of reactions known as “glycolysis.” Glucokinase catalyzes the first step of glycolysis in the liver and in pancreatic beta cells. Mutations in GCK increase the sugar concentration in order for GCK to properly metabolize sugar, and this increases blood sugar levels and increases the risk for vascular complications.

The steps of the enzymatic pathway glycolysis, which is used by cells to degrade sugar to energy.
The steps of the enzymatic pathway glycolysis, which is used by cells to degrade sugar to energy.

MODY patients are usually misdiagnosed as type 1 or type 2 diabetics, but proper diagnosis can greatly alter the treatment of this disease. Correctly diagnosing MODY can also alert family members that they too might be carriers or even susceptible to this disease.

NYSCF researchers worked with skin cells from two patients from the Berrie Center who had type 2 MODY. After reprogramming these skin cells to become iPSCs, they differentiated the cells into beta cells, These cells had the impaired GCK activity, but in order to compare them to something, the NYSCF group also made iPSCs with a genetically engineered version of GCK that was impaired in the same way as the GCK gene in these two patients, and another cell line with normal versions of the GCK gene. They used these iPSCs to make cultured beta cells.

“Our ability to create insulin-producing cells from skin cells, and then to manipulate the GCK gene in these cells using recently developed molecular methods, made it possible to definitely test several critical aspects of the utility of stem cells for the study of human disease,” said Haiqing Hua, lead author of this paper and a postdoctoral fellow in the Division of Molecular Genetics.

The beta cells made from these iPSCs were transplanted into mice and these mice were given an oral glucose tolerance test. An oral glucose tolerance test is used to diagnose diabetes mellitus. The patient fasts for 12 hours and then is given a concentrated glucose concentration (4 grams per kilogram body weight), which the patient drinks and then the blood glucose level is examined at 30-minute intervals. The blood glucose levels of diabetic patients will rise and only go down very sluggishly whereas the blood glucose levels of a nondiabetic patient will rise and then decrease as their pancreatic beta cells start to make insulin. Insulin signals cells to take up glucose and utilize it, which lowers the blood glucose levels. A reading of over 200 milligrams per deciliters

When mice with the transplanted beta cells made from iPSCs were given oral glucose tolerance tests, the beta cells from MODY patients   showed decreased sensitivity to glucose.  In other words, even in the presence of high blood sugar levels, the beta cells made from iPSCs that came from MODY patients secreted little insulin.  However, high levels of amino acids, which are the precursors of proteins, also induces insulin secretion, and in this case, beta cells from MODY patients secreted sufficient quantities of insulin.

When the iPSCs made from cells taken from MODY patients were subjected to genetic engineering techniques that repaired the defect in the GCK gene, these iPSCs differentiated into beta cells that responded normally to high blood glucose levels and secreted insulin when the blood glucose levels rose.

By making beta cells from MODY patients and then correcting the genetic defect in them and returning them to normal glucose sensitivity, NYSCF scientists showed that this type of diagnosis could lead to cures for MODY patients.

“These studies provide a critical proof-of-principle that genetic characteristics of patient-specific insulin-producing cells can be recapitulated through use of stem cell techniques and advanced molecular biological manipulation.  This opens up strategies for the development of new approaches to the understanding, treatment, and, ultimately, prevention of more common types of diabetes,” said Rudolph Leibel of the Columbia University Medical Center.

TRF1 Gene Necessary for Reprogramming


In order to convert cells from almost any tissue in our bodies into induced pluripotent stem cells (iPSCs) requires a detailed knowledge of the reprogramming process. Initiating the reprogramming process differs from one cell type to another, but the cellular and genetic mechanics of reprogramming might be largely the same.

A research team at the Spanish National Cancer Research Center headquartered in Madrid, Spain, and headed by Ralph P. Schneider from the Telomeres and Telomerase Group, which is led by Maria A. Blasco, have discovered that a gene called TRF1 is essential for nuclear reprogramming.

TRF1 or telomere repeat binding factor 1 is a member of a complex of proteins called the “shelterin complex” that binds to the ends of chromosomes (known as telomeres) and protects them. Mouse embryos that lack TRF1 die very early during embryonic life and if an adult tissue is missing TRF1, it shrinks and stops working (organ atrophy).

Shelterin Complex

A variety of observations have established that pluripotent cells have long, intact telomeres. Furthermore, pluripotent cells have a very active telomerase enzyme, which is the enzyme that synthesizes the telomere ends of each chromosome. Telomeres not only protect the structural integrity of the chromosomes, but they also serve as a template or starting point for the replication and extension of the telomerase by telomerase.

In the cell, the telomere does not exist in isolation, but it is embedded in a complex of DNA and the shelterin complex proteins, of which TRF1 is a member. Pluripotent cells have very long telomeres, but it is uncertain if the shelterin complex components are necessary to maintain the pluripotent state (see Marión RM, Blasco MA. Curr Opin Genet Dev. 2010 Apr;20(2):190-6).

To investigate this question, Schneider and others constructed a version of TRF1 that was fused to a glowing proteins in order to track its function during reprogramming. Then they injected this construct into mouse embryonic stem cells and made genetically engineered mice that carried this glowing version of TRF1.

When they tracked TRF1 function in adult cells, embryonic cells, and stem cells, it was clear that TRF1 is a superb marker for stem cells. It distinguishes adult stem cells from non-stem and is also indispensable for stem cell function. In fact, TRF1 is such a good marker for stem cells that it can be used to isolated stem cells from surrounding cells.

Pluripotent stem cells show the highest levels of TRF1 expression. In fact, in iPSCs, the expression of TRF1 goes from very low to rather high. This led Schneider and his colleagues to suggest that TRF1 is an indicator of pluripotency. To corroborate their hypothesis, Schneider and others showed that the more pluripotent the iPSC stem cell line, the higher the levels of expression of TRF1. Also, TRF1 is required to maintain pluripotency and is also required for the induction of pluripotency. TRF1 inhibits cell death and the expression of TRF1 is directly activated by the pro-pluripotency gene Oct4.

Thus TRF1 is another gene required for iPSC production.  It also seems to be required for iPSC production regardless of the tissue from which is comes from.

ATHENA Trial Tests Fat-Derived Stem Cells as a Treatment for Heart Failure


The FDA-approved ATHENA trial is the brainchild of stem cell researchers at the Texas Heart Institute at St. Luke’s Episcopal Hospital. The ATHENA trial is the first trial in the United States to examine the efficacy of adipose-derived regenerative cells or ADRCs as a treatment for a severe form of heart failure.

To harvest ADRCs, Texas Heart Institute researchers used a technique that was developed by Cytori Therapeutics, which is a biotechnology company that specializes in cell-based regenerative therapies. Previous clinical trials in Europe strongly suggest that such ADR-based therapies are quite safe and feasible. To date, physicians are the Texas Heart Institute have treated six patients as a part of the ATHENA trial.

athena_process_illustration_500x369.jpg

James Willerson, the president and medical director of the Texas Heart Institute, is the principal investigator in the ATHENA trial. Willerson said, “We have found that body fat tissue is a valuable source of regenerative stem cells that are relatively easy to access. We have high hopes for the therapeutic promise of this research and believe that it will lead quickly to larger trials.”

The subjects for the ATHENA trial are patients who suffer from chronic heart failure due to coronary heart disease. Coronary heart disease results from blockage of the coronary vessels and feed the heart muscle and limits the oxygen supply to the heart muscle, and consequently, the pumping activity of the heart muscle. Data from the American Heart Association reveals that there are about 5.1 million Americans who currently live with heart failure, and in many cases, the only viable treatment is a left ventricular assist device (LVAD) or a heart transplant. Unfortunately, there are only about 2,200 heart transplants a year due to a severe shortage of organs.

Coronary artery disease

Patients who are enrolled in the ATHENA trials are randomized and some will receive a placebo treatment and others will receive the experimental treatment. All patients will undergo liposuction in order to remove adipose or fat tissue. Processing of the fat tissue isolates the ADRCs, and the experimental patients will have these cells injected directly into their heart muscle, but the placebo patients will receive injections of culture medium or saline that contains no cells. ATHENA will measure several data endpoints that include objective measures of heart function, exercise capacity, and questionnaires that assess the symptoms and health-related quality-of-life.

The US trial will enroll a total of 45 patients at several centers around the country and these centers include the Texas Heart Institute, Minneapolis Heart Institute, Scripps Green Hospital in San Diego, CA, the University of Florida at Gainesville, and Cardiology P.C. in Birmingham. Patients are being enrolled.

Healthline has recently compiled the statistics on heart disease in an impressive and colorful manner at this link.