Stem Cell Treatments to Repair Cartilage Defects in the Knee

Erosions of the cartilage that covers the surfaces at the ends of our leg bones has motivated several laboratories to undertake clinical studies to test new techniques to heal lost cartilage, particularly at the knee. Many of these techniques have their share of drawbacks and advantages, but the number of clinical trials to deal with cartilage lesions of the knee are increasing. Unfortunately, more work remains to be done, but much more is known about several of these techniques than before. This article will summarize many of these techniques.

Microfracture is a procedure in which several small holes are drilled into the end of the bone to enhance the migration of mesenchymal stem cells from the bone marrow to the site of the cartilage defect. These MSCs then differentiate into chondrocytes and make cartilage that fills the lesion with new cartilage. Unfortunately, the cartilage made in these cases is fibrocartilage and not hyaline cartilage. Fibrocartilage lacks the biomechanical strength and durability of hyaline cartilage and it typically deteriorates 18-24 months after surgery. When used to treat large lesions, 20-50% of all cases develop intralesional osteophytes and the sclerotic bone increases the failure rate of autologous chrondrocyte implantation 3-7X. Thus microfractionation is only performed under very specific conditions and only in young patients, since this technique does not work in older patients.


Autologous Chondrocyte Implantation or ACI uses a full-thickness punch biopsy from a low-weight-bearing region of the joint taken during an arthroscopic surgery. This biopsy contains chondrocytes that are grown in cell culture to a population of about 12-48 million chondrocytes, which are troweled into the lesion during a second arthroscopic surgery. Clinical trials have established that ACI is safe and effective for large knee lesions. Peterson and others and Minas and others have established that even after 10 years, patients who have been treated with ACI show good relief of pain and increased knee function.

In the Peterson study, questionnaires were sent to 341 patients. 224 of 341 patients replied to the questionnaires, and of these respondents, 74% of the patients reported their status as better or the same as the previous years 10-20 years after the procedure (mean, 12.8 years).  92% were satisfied and would have ACI again.  Knee function and pain levels were significantly better after the procedure than before.  From this study, Peterson and others concluded that ACI is an effective and durable solution for the treatment of large full-thickness cartilage and osteochondral lesions of the knee-joint, and that the clinical and functional outcomes remain high even 10 to 20 years after the implantation.

Minas and others analyzed data from 210 patients treated with ACI who were followed for more than 10 years. ACI provided durable outcomes with a survivorship of 71% at 10 years and improved function in 75% of patients with symptomatic cartilage defects of the knee at a minimum of 10 years after surgery. A history of prior marrow stimulation as well as the treatment of very large defects was associated with an increased risk of failure.
In comparison studies by Bentley and others, ACI produced superior results to mosaicplasty (osteochondral transplantation or cylinders of bone drilled form low-weight-bearing parts of the knee that are implanted in a mosaic fashion into the knee).  In the Bentley study, 10 of 58 ACI patients had failed grafts after 10 years, but 23 of 42 mosaicplasty patients had failed cartilage repair.  According to studies by Based and others, and Saris and others, ACI is also superior to microfractionation in the repair of large cartilage lesions (>3 cubic cm), but seems to provide the same outcomes as microfracture for smaller lesions, according to Knudsen and others.  There are drawbacks to ACI.  The tissue flap used to seal the cartilage implant sometimes becomes pathologically enlarged.  Other materials have been used to seal the patch, such as hyaluronic acid, or collagen types I and III, but the use of these materials increases the expense of the procedure and the likelihood that the immune system will response to the covering.  Also, ACI outcomes vary to such an extent that the procedure is simply too unstandardized at the present time to be used consistently in the clinic.

Autologous Cartilage Implantation

In an attempt to standardize ACI, several orthopedic surgeons have tried to add a supportive scaffold of some sort to the chondrocytes harvested from the patient’s body.  Several studies in tissue culture have shown that chondrocytes not only divide better, but also keep their identities as chondrocytes better in a three-dimensional matrix (see Grigolo et al, Biomaterials (2002) 23: 1187-1195 and Caron et al, Osteoarthritis Cartilage (2012) 20; 1170-1178).  Therefore, ACI has given way to MACI or Matrix-Induced Autologous Chondrocyte Implantation, which seeds the chondrocytes on an absorbable porcine-derived mixed collagen (type I and III) prior to implantation.  The implant is then secured into the debrided cartilage lesion by means of a fibrin cover.

Several case studies have shown that MACI has substantial promise, but individual case studies are the weakest evidence available.  To prove its superiority over ACI or microfracture surgery, MACI must be compared in controlled studies.  In the few studies that have been conducted, the superiority of MACI remains unproven to date.  Patients who received MACI or ACI showed similar clinical outcomes in two studies (Bartlett and others, Journal of Bone and Joint Surgery (2005) 87: 640-645; and Zeifang et al, American Journal of Sports Medicine (2010) 38: 924-933), although those who received MACI showed a significantly lower tendency for the graft to enlarge.  MACI is clearly superior to microfracture surgery (Basad, et al., Knee Surgery, Sports Traumatology and Arthroscopy (2010) 18: 519-527), but longer-term studies are needed to establish the superiority of MACI over other treatment options.

A slight variation of the MACI theme is to embed the chondrocytes in a gel-like material called hyaluronic acid (HA).  HA-embedded chondrocytes have been shown to promote the formation of hyaline cartilage in patients (Maracci et al., Clinical Orthopedics and Related Research (2005) 435: 96-105).  Even though the outcomes are superior for patients treated with HA-MACI, the recovery period is longer (Kon E, et al., American Journal of Sports Science (2011) 39: 2549-2567).  MACI is available in Europe but not the US to date.  FDA approval is supposedly pending.  Long-term follow-up studies are required to establish the efficacy of this procedure.

Future prospects for treating knee cartilage lesions include culturing collagen-seeded chondrocytes for a longer period of time than the three days normally used for MACI.  During these longer culture periods, the seeded chondrocytes mature, and make their own scaffolds, which ensure higher-quality cartilage and better chondrocyte engraftment (see Khan IM and others, European Cell Materials (2008) 16: 26-39).  Alternatively, joint cartilage responds to stress by undergoing cell proliferating and increasing in density.  This response is due to the production of growth factors such as Transforming Growth Factor-β1 and -β3 (TGF-β1 and TGF-β3).  This motivated some enterprising tissue engineers to use recombinant forms of these growth factors to grow cartilage in bioreactors under high-stress conditions.  Such a strategy has given rise to NeoCart, a tissue-engineered product that has gone through Phase I and II trials and has been shown in two-year follow-up studies to be safe and more effective than microfracture surgery (Crawford DC and others, Journal of Bone and Joint Surgery, American Volume. 2012 Jun 6;94(11):979-89 and Crawford DC, and others, Am J Sports Med. 2009 Jul;37(7):1334-43).

Mesenchymal stem cells (MSCs) from bone marrow and other sites have also been used to successfully treat cartilage lesions.  These types of treatments are less expensive than ACI and MACI, and do not require two surgeries as do ACI and MACI.  The studies that have been published using a patient’s own MSCs have been largely positive, although some pain associated with the site of the bone marrow aspiration is a minor side effect (see Centeno and others, Pain Physician (2008) 11:343-353; Emadedin, et al., Arch Iran Med (2012) 15: 422-428; Wong RL, et al., Arthroscopy (2013) 29: 2020-2028).  Fat-based MSCs have been tested as potential cartilage-healers in elderly patients (Koh YG, et al., Knee Surgery, Sports Traumatology, and Arthroscopy (Dec 2013, published on-line ahead of print date).  While these initial results look promising,, fat-based, MSCs have only just begun to be tested for their ability to regenerate cartilage.  Fat-based MSCs show different properties than their bone-marrow counterparts, and it is by no means guaranteed that fat-based MSCs can regenerate cartilage as well as MSCs from bone marrow.

Fresh cartilage grafts from donors (aka – cartilage allografts) use transplanted cartilage that has been freshly collected from a donor.  Fresh cartilage allografts have had positive benefits for young, active patients and the grafts have lasted 1-25 years (Gross AE, et al., Clinical Orthopedics and Related Research (2008) 466: 1863-1870).  Particulate cartilage allografts takes minced cartilage and lightly digests it with enzymes to liberate some of the cartilage-synthesizing chondrocytes, and then pats this material into the cartilage lesion, where it is secured with a fibrin glue plug.  The cartilage provides an excellent matrix for the synthesis of new cartilage, and the chondrocytes make new cartilage while seeded onto this cartilage scaffold.  Clinical experience with this technique includes a two-year follow-up in which MRI evidence showed good filling of the lesions (Bonner KF, Daner W, and Yao JQ, Journal of Knee Surgery 2010 23: 109-114 and Farr J, et al., Journal of Knee Surgery 2012 25: 23-29).  A variation on this technique uses a harvested hyaline cartilage plug that is glued into an absorbable scaffold before transplantation into the cartilage lesion.  This procedure had the same safety profile as microfracture surgery, but resulted in better clinical outcomes, high quality cartilage, and fewer adverse side effects (Cole JB et al., American Journal of Sports Medicine 2011 39: 1170-1179).  A clinical trial that tested this procedure remains uncompleted after the company suspended the trial because of conflicts with the FDA (Clinical Trial NCT00881023).

AMIC or Autologous Matrix-Induced Chondrogenesis is a cell-free treatment option in which the cartilage lesion is cleaned and filled subjected to microfracture, after which the lesion is filled with a mixed collagen matrix that is glued or stitched to the cartilage lesion.  The MSCs released by the microfracture procedure now move into a scaffold-laden cartilage lesion that induces the formation of hyaline cartilage.  This technique appears to aid the filling of full-thickness cartilage defects, and follow-up examinations have revealed that after 5 years, patients showed substantial improvements in knee function, pain relief and MRI analyses of knee cartilage showed high-quality cartilage in repaired lesion (Kusano T, et al., Knee Surgery, Sports Traumatology, and Arthroscopy 2012 20: 2109-2115; Gille J, et al., Archives of Orthopedic Trauma Surgery 2013 133: 87-93; Gille J, et al., Knee Surgery, Sports Traumatology, and Arthroscopy 2010 18: 1456-1464).

These are just a few of the new treatments of cartilage lesions of the knee and other joints.  As you can see, all of this will lead to greater repair of knee lesions and it is all being done without embryonic stem cells or destroying embryos.

Platelet-Rich Plasma Enhances the Clinical Outcomes of Microfracture Surgery in Older Patients

Osteoarthritis occurs when the cartilage that covers the opposing bones at a joint erodes away and the bare opposing bones smash into each other causing the bone to crack, fragment and chip. The result is extensive inflammation of the joint and further destruction of the bone, which prompts a knee replacement.

Because knee replacement surgeries are so painful and because they only last about two decades at the most, replacing the lost cartilage is a better option. One surgical treatment for osteoarthritis is microfracture surgery. Microfracture surgery involves the drilling of small holes in the tips of the bones of the joint to serve as conduits for stem cells in the bone to come to the surface and make cartilage.

Unfortunately, there are some problems with microfacture surgery, the most prominent of which is that it works better in younger patients than in older patients. Patients older than 40 years old show a precipitous drop in success after microfracture surgery. Thus, finding some way to increase the activity of cartilage production by endogenous stem cells would be a welcome finding for orthopedic surgeons.

Platelet-rich plasma (PRP) has been used to augment the cartilage-making activities of mesenchymal stem cells from bone marrow. Therefore, some surgeons from South Korea decided to try adding PRP to the knees of patients who had just had microfracture surgery. They examined 49 patients with early arthritis. All of these patients were subjected to arthroscopic microfracture surgery for a cartilage lesion that was less than four cubic centimeters in size. These patients were all between the ages of forty to fifty years old, which means that they were outside the age range for successful microfracture surgery.

These 49 patients were randomly divided into two groups. The first group was a control group of 25 patients that only had arthroscopic microfracture surgery. The second group consisted of 24 patients and they had arthroscopic microfracture surgery and injections of PRP into the knee. 10 patients from each group had follow-up arthroscopies four to six months after the procedure to determine the extent of cartilage restoration. Further evaluations were also done 2 years after the procedure.

The results? There were significant improvements in clinical results between preoperative evaluation and postoperative at 2 years post surgery in both groups (p = 0.017). However in the group that received PRP injections plus microfracture surgery the results were significantly better than those of the control group. These patients had better range of motion and less pain (p = 0.012). In the 2nd look arthroscopies, the cartilage of the patients that received PRP and microfracture surgery was harder and showed increased elasticity than the cartilage of patients that received only microfracture surgery.

The conclusion of these authors: “The PRP injection with arthroscopic microfracture would be improved the results in early osteoarthritic knee with cartilage lesion in 40-50 years old, and the indication of this technique could be extended to 50 years.” (Lee GW et al., “Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? European Journal of Orthopedic Surgery. 2012 Jul 5., epub ahead of publication)  If PRP could improve the outcomes of microfracture surgery, then maybe such a technique could extend the groups of patients who are successfully served by this procedure.

While this is an exciting result, we must temper our excitement with the realization that this is a small study and MRIs were not used to measure cartilage thickness. Therefore, while this study is useful and frankly, ingenious, it has its limitations.

Tissue Engineers Use New Biomaterial to Repair Knee Cartilage

Tissue engineers from Johns Hopkins University School of Medicine’s Translational Tissue Engineering Center (TTEC) have used a biomaterial to stimulate and facilitate the growth of new cartilage in human patients.

An illustration of the cartilage repair surgical procedure. A mini-incision exposes the cartilage defect (top left-hand panel), and any dead tissue is removed from the edges. (B) The adhesive is then applied to the base and walls of the defect, followed by microfracture. (C) Lastly, the hydrogel solution is injected into the defect. (D) Bleeding from the microfracture holes is trapped in and around the hydrogel.Science Translational Medicine/AAAS
An illustration of the cartilage repair surgical procedure. A mini-incision exposes the cartilage defect (top left-hand panel), and any dead tissue is removed from the edges. (B) The adhesive is then applied to the base and walls of the defect, followed by microfracture. (C) Lastly, the hydrogel solution is injected into the defect. (D) Bleeding from the microfracture holes is trapped in and around the hydrogel.
Science Translational Medicine/AAAS

This was a rather small study that only examined 15 patients. All 15 patients had cartilage defects and were scheduled to undergo “microfracture surgery.” Microfracture surgery uses a drill to bore tiny holes in the bone. These small holes allow bone marrow stem cells to leak into the joint space and make new bone and cartilage. In this study, hydrogel scaffolding was troweled into the wound to in order to support and nourish the healing process. The results from this study were published in the Jan. 9 issue of Science Translational Medicine. According to the authors, this study is a proof of concept trial that paves the way for larger trials to test the hydrogel’s safety and effectiveness.

“Our pilot study indicates that the new implant works as well in patients as it does in the lab, so we hope it will become a routine part of care and improve healing,” says Jennifer Elisseeff, the Jules Stein Professor of Ophthalmology and director of the Johns Hopkins University School of Medicine’s TTEC. Cartilage damage results from overuse, injury, disease or faulty genes. Microfracture surgery is a standard of care for cartilage repair, but when holes in cartilage are caused by joint injuries, microfracture surgery often either fails to stimulate new cartilage growth or grows cartilage that is less hardy than the original tissue

To address this problem, tissue engineers, such as Elisseeff, have postulated that the bone marrow mesenchymal stem cells need a nourishing scaffold on which to grow in order to make the right type of cartilage and enough of it. Unfortunately, demonstrating the clinical value of hydrogels has been slow, difficult, and expensive. By experimenting with various materials, Elisseeff and her colleagues have developed a promising hydrogel, and an adhesive that sticks the hydrogel to the bone.

After testing the combination for several years in the lab and in goats, the hydrogel seemed ready for human trials. Elisseeff and her group collaborated with orthopedic surgeons to conduct their first clinical study. 15 patients with holes in the cartilage of their knees received a hydrogel and adhesive implant along in combination with microfracture surgery. In order to compare the efficacy of their hydrogel, another three patients were treated with microfracture surgery alone. After six months, it was clear that the hydrogel implants had caused no major problems. Furthermore, magnetic resonance imaging of these patient’s knees showed that patients with implants had new cartilage filling an average 86% of their defects in their knees, and patients that had received only microfracture surgery had an average of 64% of their tissue replaced. Patients with the implant also reported a greater decrease in knee pain in the six months following surgery, according to the investigators.

As the trial continues, more patients have enrolled. This clinical trial is presently managed by a company called Biomet. These data from this trial is part of an effort to earn European regulatory approval for the device.

Elisseeff and her team have begun developing a next-generation implant in which the hydrogel and adhesive will be combined in a single material. Elisseeff and others are also interested in technologies for joint lubrication that reduce joint pain and inflammation