How Stem Cell Therapy Protects Bone In Lupus


Systemic Lupus Erythematosis, otherwise known as lupus, is an autoimmune disease cause your own immune system attacking various cells and tissues in your body. Lupus patients can suffer from fatigue, joint pain and selling and show a marked increased risk or osteoporosis.

Clinical trials have established that infusions of mesenchymal stem cells (MSCs) can significantly improve the condition of lupus patients, but exactly why these cells help these patients is not completely clear. Certainly suppression of inflammation is probably part of the mechanism by which these cells help lupus patients, but how do these cells improve the bone health of lupus patients?

Songtao Shi and his team at the University of Pennsylvania have used an animal model of lupus to investigate this very question. In their hands, transplanted MSCs improve the function of bone marrow stem cells by providing a source of the FAS protein. FAS stimulates bone marrow stem cell function by means of a multi-step, epigenetic mechanism.

This work by Shi and his colleagues has implications for other cell-based treatment strategies for not only lupus, but other diseases as well.

“When we used transplanted stem cells for these diseases, we didn’t know exactly what they were doing, but saw that they were effective,” said Shi. “Now we’ve seen in a model of lupus that bone-forming mesenchymal stem cell function was rescued by a mechanism that was totally unexpected.”

In earlier work, Shi and his group showed that mesenchymal stem cell infusions can be used to treat various autoimmune diseases in particular animals models. While these were certainly highly desirable results, no one could fully understand why these cells worked as well as they did. Shi began to suspect that some sort of epigenetic mechanism was at work since the infused MSCs seemed to permanently recalibrate the gene expression patterns in cells.

In order to test this possibility, Shi and others found that lupus mice had a malfunctioning FAS protein that prevented their bone marrow MSCs from releasing pro-bone molecules that are integral for bone maintenance and deposition.

A deficiency for the FAS protein prevents bone marrow stem cells from releasing a microRNA called miR-29b.  The failure to release miR-29b causes its concentrations to increase inside the cells.  miR-29b can down-regulate an enzyme called DNA methyltransferase 1 (Dnmt1), and the buildup of miR-29b inhibits Dnmt1, which causes decreased methylation of the Notch1 promoter and activation of Notch signaling.  Methylation of the promoters of genes tends to shut down gene expression, and the lack of methylation of the Notch promoter increases Notch gene expression, activating Notch signaling.  Unfortunately, increased Notch signaling impaired the differentiation of bone marrow stem cells into bone-making cells.  Transplantation of MSCs brings FAS protein to the bone marrow stem cells by means of exosomes secreted by the MSCs.  The FAS protein in the MSC-provided exosomes reduce intracellular levels of miR-29b, which leads to higher levels of Dnmt1.  Dnmt1 methylates the Notch1 promoter, thus shutting down the expression of the Notch gene, and restoring bone-specific differentiation.

Shi and others are presently investigating if this FAS-dependent process is also at work in other autoimmune diseases.  If so, then stem cell treatments might convey similar bone-specific benefits.

MSC Transplantation Reduces Bone Loss via Epigenetic Regulation of Notch Signaling in Lupus


Mesenchymal stem cells from bone marrow, fat, and other tissues have been used in many clinical trials, experiments, and treatment regimens. While these cells are not magic bullets, they do have the ability to suppress unwanted inflammation, differentiate into bone, cartilage, tendon, smooth muscle, and fat, and can release a variety of healing molecules that help organs from hearts to kidneys heal themselves.

Mesenchymal stem cell transplantation (MSCT) is the main means by which mesenchymal stem cells are delivered to patients for therapeutic purposes. However, the precise mechanisms that underlie the success of these cells are not fully understood. In a paper by from the University Of Pennsylvania School Of Dental Medicine published in the journal Cell Metabolism, MSCT were able to re-establish the bone marrow function in MRL/lpr mice. The MRL/lpr mouse is a genetic model of a generalized autoimmune disease sharing many features and organ pathology with systemic lupus erythematosus (SLE). Such mice show bone loss and poor bone deposition, a condition known as “osteopenia.” Because mesenchymal stem cells are usually the cells in bone marrow that differentiate into osteoblasts (which make bone) a condition like osteopenia results from defective mesenchymal stem cell function.

In this paper, Shi and his coworkers and collaborators showed that the lack of the Fas protein in the mesenchymal stem cells from MRL/lpr mice prevents them from releasing a regulatory molecule called “miR-29b.” This regulatory molecule, mir-29b, is a small RNA molecule known as a microRNA. MicroRNAs regulate the expression of other genes, and the failure to release miR-29b increases the intracellular levels of miR-29b. This build-up in the levels of miR-29b causes the downregulation of an enzyme called “DNA methyltransferase 1” or Dnmt1. This is not surprising, since this is precisely what microRNAs do – they regulate genes. Dnmt1 attaches methyl groups (CH3 molecules) to the promoter or control regions of genes.

Decrease in the levels of Dnmt1 causes hypomethylation of the Notch1 promoter. When promoters are heavily methylated, genes are poorly expressed. When very methyl groups are attached to the promoters, then the gene has a greater chance of being highly expressed. Robust expression of the Notch1 genes activates Notch signaling. Increased Notch signaling leads to impaired bone production, since differentiation into bone-making cells requires mesenchymal stem cells to down-regulate Notch signaling.

When normal mesenchymal stem cells are transplanted into the bone marrow of MRL/lpr mice, they release small vesicles called exosomes that transfer the Fas protein to recipient MRL/lpr bone marrow mesenchymal stem cells. The presence of the Fas protein reduces intracellular levels of miR-29b, and this increases Dnmt1-mediated methylation of the Notch1 promoter. This decreases the expression of Notch1 and improves MRL/lpr BMMSC function.

fx1

These findings elucidate the means by which MSCT rescues MRL/lpr BMMSC function. Since MRL/lpr mice are a model system for lupus, it suggests that donor mesenchymal stem cell transplantation into lupus patients provides Fas protein to the defective, native mesenchymal stem cells, thereby regulating the miR-29b/Dnmt1/Notch epigenetic cascade that increases differentiation of mesenchymal stem cells into osteoblasts and bone deposition rates.

Stem Cell-Based Exosomes Heal Hearts After a Heart Attack


A new paper in the journal Circulation Research by a research team from the Temple University School of Medicine (TUSM) has examined the use of tiny stem cell-based vesicles to help limit the damage caused by a heart attack. Even those these experiments were performed with laboratory mice, the result are very promising.

A heart attack tends to badly damage it, and since the heart has little innate ability to repair itself, it has to compensate by growing large and flabby, which can lead to congestive heart failure, Congestive heart failure is currently responsible for one in nine deaths in the United States.

The research team of Raj Kishore at the Temple University School of Medicine turned to exosomes to heal the heart. Exosomes are tiny sacks secreted by cells that act as messengers that pass messengers between cells in various parts of the body. While these extracellular vesicles are secreted by nearly all types of cell, exosomes from stem cells might be a useful tool in mitigating damage caused by heart attacks.

Exosomes
Exosomes

“If your goal is to protect the heart, this is a pretty important finding,” Dr. Kishore said. “You can robustly increase the heart’s ability to repair itself without using the stem cells themselves. Our work shows a unique way to regenerate the heart using secreted vesicles from embryonic stem cells.”  Kishore’s group is also beginning to determine those members of this “work crew” within the vesicles may be responsible for the damage repair.

Previous studies have shown that injecting damaged hearts with stem cells increases heart function after a heart attack. However, the injected cells tend to not survive very long when placed in the damaged heart, and most of their benefits are due to molecules that the administered stem cells secrete. Pluripotent stem cells (embryonic stem cells, for example) run the risk of creating a tumor made up of a mass of cells of different tissue types, known as a teratoma. Therefore, Khan’s tram approached the problem from a slightly different angle by injecting only the exosomes made by stem cells. It was known that this would avoid the teratoma problem, and could have positive effects on damaged heart tissue.

Exosome poster

The study examined mice that had suffered heart attacks. These animals were split into two groups; one group received exosomes from mouse embryonic stem cells, and the other group were injected with fibroblast exosomes.

The results were extremely promising. The mice that had received stem cell-derived exosomes exhibited improved heart function, less scar tissue, lower levels of programmed cell death and better capillary development around the damaged area. There was also a higher presence of cardiac progenitor cells – the heart’s own stem cells – in the stem cell exosome-injected mice. Overall, the heartbeat of the mice was stronger than those in the control group, with less unhealthy enlargement of the organ.

Khan and others examined an abundant gene-regulating molecule (microRNA) from the stem cell-derived exosomes, known as miR-294. They introduced this microRNA into cultured cardiac stem cells. This microRNA recapitulated many of the positive effects of the stem cell exosomes that had been observed in the animal study.

Khan and his coworker plan to continue their research by studying the effects of individual microRNAs on damaged heart tissue.

“Our work shows that the best way to regenerate the heart is to augment the self-repair capabilities and increase the heart’s own capacity to heal,” says researcher Dr Mohsin Khan. “This way, we’re avoiding risks associated with teratoma formation and other potential complications of using full stem cells. It’s an exciting development in the field of heart disease.”

Temple University Lab Shows Exosomes from Stem Cells Heal Hearts After a Heart Attack


Temple University stem cell researcher Raj Kishore, who serves as the Director of the Stem Cell Therapy Program at the Center for Translational Medicine at Temple University School of Medicine (TUSM), and his colleagues have used exosomes from stem cells to induce tissue repair in the damaged heart. The results of this fascinating research made the cover of the June 19, 2015 edition of the leading cardiovascular research journal, Circulation Research.

“If your goal is to protect the heart, this is a pretty important finding,” Dr. Kishore said. “You can robustly the heart’s ability to repair itself without using the stem cells themselves. Our work shows a unique way to regenerate the heart using secreted vesicles from embryonic stem cells.” Kishore’s group is in the early stages of characterizing the molecules in these exosomes that are responsible for inducing and potentiating tissue repair.

The heart beats throughout the lifetime of an individual. Despite its apparent constancy, the heart possess little to no ability to repair itself. When heart muscle is damaged in a heart attack, the heart is unable to replace the dead tissue and grow new contracting heart muscle. Instead, after a heart attack, it compensates for lost pumping ability by enlarging, a phenomenon known as ”remodeling.” .Remodeling, however, come with a high price, since the heart grows beyond the ability of the sparse cardiac circulatory system to properly convey blood to the enlarged heart muscle. Consequently, heart contraction weakens, leading to a condition known as congestive heart failure, which contributes to, or causes one in nine deaths in the United States. Heart disease is our nation’s leading killer.

Given the fact that heart disease is the result of the death of heart muscle cells, this condition seems to tailor-made for stem cell therapy. A variety of animal experiments with stem cells from bone marrow, muscle, fat, or embryos have shown that stem cells can regenerate heart muscle. However, the regeneration of the heart is much more complicated than was originally thought. For example, injecting damaged hearts with stem cells turned out to be a rather ineffective strategy because the heart, after a heart attack, is a very hostile place for newly infused cells. Dr. Kishore noted, “People know if they inject hundreds of stem cells into an organ, you’re going to be very lucky to find two of them the next day. They die. It’s as though you’re putting them into the fire and the fire burns them.”

Dr. Kishore has used a very different approach for regenerative medicine. Over 10 years ago, cancer researchers discovered tiny sacks excreted by cells that they called “exosomes.” These exosomes were thought to be involved with waste disposal, but later work showed that they were more mini-messengers, carry telegrams between cells. Exosomes proved to be one way a primary tumor communicated with distant metastases. Researchers later discovered that nearly all cell types excrete exosomes. Dr. Kishore and his team began to study the exosomes of stem cells to determine if these small vesicles could solve the heart-repair problem.

In 2011, Kishore’s team published the first paper to ever examine stem cell exosomes and heart repair. This paper established Kishore and his research team as a pioneer in exosome research and in the use of exosomes in the treatment of heart disease. A year after that paper, there were a total of 52 papers published on exosomes, but today there are 7,519 papers reporting on exosome research. Among those studies, only 13 or 14 have examined exosomes in heart disease. This new paper by Dr. Kishore’s team marks its third contribution to the science of exosomes and heart repair.

In the current study, Kishore and others used a mouse model of heart attack. Also involved in the research are Dr. Kishore’s colleagues from Temple’s Center for Translational Medicine, the Cardiovascular Research Center, and the Department of Pharmacology, as well as researchers from the Feinberg Cardiovascular Research Institute at Northwestern University in Chicago.

In this study, after suffering a heart attack, the mice received exosomes from either embryonic stem cells or exosomes from fibroblasts. Mice that received the fibroblast-derived exosomes served as the control group. The results were unmistakable. Mice that received exosomes from embryonic stem cells showed significantly improved heart function after a heart attack compared to the control group. More heart muscle cells in these mice survived after the heart attack, and their hearts also exhibited less scar tissue. Fewer heart cells committed suicide — a process known as programmed cell death, or apoptosis. Also, hearts from mice treated with embryonic stem cell-derived exosomes showed greater capillary development around the areas of injury. The increased density of blood vessels improved circulation and oxygen supply to the heart muscle. Further, there was a marked increase in endogenous cardiac progenitor cells, which is the hearts own internal stem cell population. These cells survived and created new heart cells. The heartbeat was more powerful in the experimental group compared to the control group, and the kind of unhealthy enlargement that compensates for tissue damage was minimized.

Vishore’s group also tested the effect of one of the most abundant gene-regulating molecules (microRNAs) found in the stem cell exosome; a microRNA called miR-294. When purified miR-294 alone was introduced to cardiac stem cells in the laboratory, it mimicked many of the effects seen when the entire exosome was delivered. “To a large extent, this micro-RNA alone can recapitulate the activity of the exosome,” Dr. Kishore said. “But we can never say it is responsible for all of the response because embryonic stem cell exosomes have many other microRNAs.”

Future research will examine both exosome therapy and the use of specific microRNAs for heart repair in large-animal models of heart attack with a view to eventually testing these components in human patients in clinical trials.

“Our work shows that the best way to regenerate the heart is to augment the self-repair capabilities and increase the heart’s own capacity to heal,” Dr. Kishore said. “This way, we’re avoiding risks associated with teratoma formation and other potential complications of using full stem cells. It’s an exciting development in the field of heart disease.”

A New Way to Mend Broken Hearts


Salk Institute researchers have discovered a way to heal injured hearts by reactivating long dormant molecular machinery found in the heart cells. This significant finding could open the door to new therapies for heart disorders in humans.

These new results were published in the November 6th, 2014 edition of the journal Cell Stem Cell. Although adult mammals don’t normally regenerate damaged tissue, they seem to retain a latent ability to do so. When the Salk team inhibited four different molecules that suppress genetic programs that lead to organ regeneration, they observed a dramatic improvement in heart regeneration and healing in laboratory mice.

These experiments provide proof-of-concept for a new type of clinical treatment in the fight against heart disease, which, according to the US Centers for Disease Control and Prevention, kills about 600,000 people each year in the United States alone.

“Organ regeneration is a fascinating phenomenon that seemingly recapitulates the processes observed during development. However, despite our current understanding of how embryogenesis and development proceeds, the mechanisms preventing regeneration in adult mammals have remained elusive,” says the study’s senior author Juan Carlos Izpisua Belmonte, holder of the Roger Guillemin Chair and primary investigator in the Gene Expression Laboratory and the Salk Institute.

We have within every cell of our bodies, the genes for organ regeneration. For several years, Izpisua Belmonte and his coworkers have attempted to clarify the genes that organism uses during embryonic development and during tissue healing highly regenerative organisms such as the zebrafish.

An injured zebrafish heart showing proliferating cells in the wounded area of the heart (red) and cardiac muscle cells (green).
An injured zebrafish heart showing proliferating cells in the wounded area of the heart (red) and cardiac muscle cells (green).

In 2003, Izpisua Belmonte’s laboratory first identified the signals that precede zebrafish heart regeneration, which they followed-up with a 2010 Nature paper, in which scientists from Izpisua Belmonte’s laboratory described how regeneration occurred in the zebrafish. Rather than stem cells invading injured heart tissue, the cardiac cells themselves reverted to a precursor-like state (a process called ‘dedifferentiation’). Dedifferentiation allowed the cells to proliferate within the damaged tissue.

n a dish, heart muscle cells return to a precursor-like state after pro-regenerative treatment with microRNA inhibitors. Green shows a disorganized cardiomyocyte cytoskeleton indicative of cell dedifferentiation; red shows mitochondrial organization.
In a dish, heart muscle cells return to a precursor-like state after pro-regenerative treatment with microRNA inhibitors. Green shows a disorganized cardiomyocyte cytoskeleton indicative of cell dedifferentiation; red shows mitochondrial organization.

They next determined if mammals retained any of the molecular players responsible for this kind of regenerative reprogramming. However, such an experiment came with some risks, recalls Ignacio Sancho-Martinez, a postdoctoral researcher in Izpisua Belmonte’s lab.

“When you speak about these things, the first thing that comes to peoples’ minds is that you’re crazy,” he says. “It’s a strange-sounding idea, since we associate regeneration with salamanders and fish, but not mammals.”

What are the things that cause a heart to regenerate in these smaller animals? Extensive work on the regenerating hearts of fish and salamanders failed to reveal anything concrete. Therefore, the laboratory changed its tack. “Instead, we thought, ‘If fish know how to do it, there must be something they can teach us about it,’” says the study’s first author Aitor Aguirre, a postdoctoral researcher in Izpisua Belmonte’s group.

The team focused on microRNAs, which control the expression of many genes. They used an extensive genetic screen for microRNAs that changed their expression levels during the healing of the zebrafish heart and that were found in the mammalian genome.

Their studies uncovered four molecules in particular–MiR-99, MiR-100, Let-7a and Let-7c–that fit their criteria. All were heavily repressed during heart injury in zebrafish and they were also present in rats, mice and humans.

However, in studies of mammalian cells in a culture dish and studies of living mice with heart damage, the group saw that the levels of these molecules were high in adults and failed to decline after the heart experienced injury. Therefore, Izpisua Belmonte’s team used adeno-associated viruses that could specifically infect the heart to target each of those four microRNAs and experimentally suppress their expressing levels.

Injecting these inhibitors into the hearts of mice that had suffered a heart attack triggered the regeneration of cardiac cells, and improved numerous physical and functional aspects of the heart, such as the thickness of its walls and its ability to pump blood. The scarring caused by the heart attack was significantly reduced with treatment compared to controls.

The improvements were still obvious three and six months after treatment–a long time in a mouse’s life. “The good thing is that the success was not limited to the short-term, which is quite common in cardiac regenerative biology,” Sancho-Martinez says.

The new study focused only on a handful of 70 some microRNA candidates that turned up in their initial screen. These other molecules might also play a part in heart cell proliferation, healing scars and promoting the formation of new blood vessels–all processes critical for heart repair, Sancho-Martinez says. The data are available so that other research groups can focus on molecules that interest them.

The next step for Izpisua Belmonte’s team is to move into larger animals and see whether “regenerative reprogramming” can work in larger hearts, and for extended periods after treatment, says Sancho-Martinez. And, although the virus packaging disappeared from the animals’ bodies by 2 weeks after treatment, the scientists are working on a new way to deliver the inhibitors to avoid the need for viruses altogether.

A Molecular Switch that Determines Stem Cell Or Neuron


A University of California, San Diego School of Medicine research team has provided new information about a well-known protein that provides the switch for cells to become neurons. This protein is part of a regulatory circuit that can push an immature neural cell to become a functional neuron.

Postdoctoral fellow Chih-Hong Lou and his colleagues worked with principal investigator Miles F. Wilkinson, who is a professor in the Department of Reproductive Medicine, and is also a member of the UC San Diego Institute for Genomic Medicine. These data were published in the February 13 online issue of the journal Cell Reports. These data may also elucidate a still poorly understood process – neuron specification – and might significantly accelerate the development of new therapies for specific neurological disorders, such as autism and schizophrenia.

Wilkinson, Lou and others discovered that the conversion of immature cells to neurons is controlled by a protein called UPF1. UPF1 works in a pathway called the “nonsense-mediated RNA decay” or NMD pathway. The NMD pathway provides a quality control mechanism that eliminates faulty messenger RNA (mRNA) molecules.

mRNA molecules are synthesized from DNA in the nucleus of cells and are exported to the cytoplasm where they are translated by ribosomes into protein. All proteins are encoded by stretches of DNA known as genes and the synthesis of an RNA copy of this stretch of DNA is called transcription. After the transcription of a messenger RNA molecule, is goes to the cytoplasm and is used as the template for the synthesis of a specific protein. Occasionally, mistakes are made in the transcription of mRNAs, and such aberrant mRNAs will either be translated into junk protein, or are so damaged that they cannot be recognized by ribosomes. Such junk mRNAs will gum up the protein synthesis machinery, but cells have the NMD pathway that degrades junk mRNAs to prevent the collapse of the protein synthesis machinery.

UPF1 mechanism

A second function for the NMD pathway is to degrade a specific group of normal mRNAs to prevent the production of particular proteins. This NMD function is physiologically important, but until now it had not been clear why it is important.

Wilkinson and others have discovered that UPF1, in combination with a particular class of microRNAs, acts as a molecular switch to determine when immature (non-functional) neural cells take the plunge and differentiate into non-dividing (functional) neurons. In particular, UPF1 directs the degradation of a specific mRNA that encodes for a protein in the TGF-beta signaling pathway, which promotes neural differentiation. The destruction of this mRNA prevents the proper functioning of the TGF-beta signaling pathway and neural differentiation fails to occur. Therefore, Wilkinson, Lou and co-workers identified, for the first time, a molecular pathway in which NMD drives a normal biological response.

NMD also promotes the decay of mRNAs that encode proliferation inhibitors, which Wilkinson said might explain why NMD stimulates the proliferative state characteristic of stem cells. There are many potential clinical ramifications for these findings,” Wilkinson said. “One is that by promoting the stem-like state, NMD may be useful for reprogramming differentiated cells into stem cells more efficiently.

Wilkinson continued: “Another implication follows from the finding that NMD is vital to the normal development of the brain in diverse species, including humans. Humans with deficiencies in NMD have intellectual disability and often also have schizophrenia and autism. Therapies to enhance NMD in affected individuals could be useful in restoring the correct balance of stem cells and differentiated neurons and thereby help restore normal brain function.”

Co-authors on this paper include Ada Shao, Eleen Y. Shum, Josh L. Espinoza and Rachid Karam, from the UCSD Department of Reproductive Medicine; and Lulu Huang, from Isis Pharmaceuticals.

Funding for this research came, in part, from National Institutes of Health (grant GM-58595) and the California Institute for Regenerative Medicine.

Teaching Old Neural Stem Cells New Tricks


In our brains, cells called neurons produce nerve impulses and are responsible for thinking, learning memory, reasoning, and so on. Neurons do not exist in isolation, but in combination with cells called glial cells that support the neurons, nourish them, and protects them from stress damage. Neurons and glial cells are replenished by brain-specific neural stem cell populations in the brain.

Unfortunately, the neural stem cell population in our brains tends to produce far fewer neurons as they age. This deficit of new neurons can play a role in the onset of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Also, our own “senior moments” when we forget where we placed our iPod or car keys comes from a loss of neurons as we age.

Fortunately, some recent research might change this trend. A team from Japan’s Keio University, and the Riken national research institute, has reported the discovery of a small RNA molecule (micro-RNA) that controls neuron production in young mice. When this micro-RNA was manipulated in older mice, their neural stem cells started to make neurons again. The Japanese team also has reasons to believe that the same mechanism is at work in human brains as well. This research was reported in the journal Proceedings of the National Academies of Science. The mechanism is believed to exist in humans as well.

Senior Author Hideyuki Okano said, “We observed the neurogenic-to-gliogenic switching in developing NSCs.” Translation: Okano and his team examined embryonic mouse brains and their neural stem cell (NSC) populations. They found what many other groups have previously observed: that the developing embryonic brain NSCs create neurons first, then switch over to making glial cells later. Okano’s team also discovered the microRNA-17/106-p38 axis that is responsible for this initial neuron-to-glial cell switch during embryonic development.

When they manipulated this embryonic microRNA-17/106-p38 pathway in older, post-natal NSCs in culture, these older post-natal NSCs switched from making glial cells to producing neurons.

In culture, NSCs are difficult to control, since getting large supplies of neurons from cell cultures that various research groups call NSCs is very difficult.

Nevertheless, “there is general agreement that neurogenesis (make neurons) largely precedes gliogenesis (making glial cells) during CNS development in vertebrates,” Okano explained. And adult NSCs, according to Okano, clearly can produce neurons in the body, “whereas they exhibit strong gliogenic characteristics under culture conditions in vitro (that is, in the laboratory).”

Adult NSCs in two regions of the brain—the subventricular zone and hippocampus—also “make neurons, even though transplant studies have shown us that the adult CNS is a gliogenic environment.”

Subventricular Zone

So it seems clear that old NSCs can make neurons, at least under certain conditions. However, it is very difficult to determine the age at which NSCs begin making substantially more glial cells than neurons. According to Okano, “It is difficult to clearly explain the association between total glial cell number and changes in NSC abilities. Moreover, there is less evidence about gliogenic ability of aged NSCs because most of studies about NSCs have mainly focused on the neurogenic ability. “

Still, Okano says: “There are some reports about decline of neurogenesis ability of NSCs with age. These reports indicate that reduction in paracrine Wnt3 factors, and increase of (chemokine) CCL11 concentration in blood, impaired adult neurogenesis in the hippocampus, for example.”

Could the group’s microRNA approach improve memory in humans? Okano believes so, but says more work needs to be done.

“We observed the neurogenic effect by overexpression of miR-17 in primary cultured neurospheres” – spheres of a variety of cells, including NSCs—“derived from the SVZ at postnatal day 30. Similar phenomenon by overexpression of miR-106b-25 cluster has been reported by another group.”

Okano also warns that his approach has only been attempted in cultured cells. He cautioned, “There is no evidence using knock-out mice. Therefore, the functions of them in adult neurogenesis and learning/memory functions are still unclear.”

Next, Okano’s group will develop “a useful method for precise manipulation of cytogenesis from NSCs. “

However, he says, “we think that further understanding of basic molecular mechanisms underlying the neural development is also an important issue.” He will study the ways in which his microRNA system interacts with other glia-producing genes. He wants to fully understand the mechanisms underlying “the end of neurogenic competence and acquisition of gliogenic competence.”

Finally, the group will “examine the significance of miR-17/p38 pathway in various somatic stem cells other than NSCs,” he says.

Regenerating Injured Kidneys with Exosomes from Human Umbilical Cord Mesenchymal Stem Cells


Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 2013, 4:34.

Ying Zhou and colleagues from Jiangsi University have provided helpful insights into how adult stem cell populations – in particular, mesenchymal stem cells (MSCs) isolated from human umbilical cord (hucMSCs) – are able to regulate tissue repair and regeneration. Adult stem cells, including MSCs from different sources, confer regenerative effects in animal models of disease and tissue injury. Many of these cells are also in phase I and II trials for limb ischemia, congestive heart failure, and acute myocardial infarction (Syed BA, Evans JB. Nat Rev Drug Discov 2013, 12:185–186).

Despite the documented healing capabilities of MSCs, in many cases, even though the implanted stem cells produce genuine, reproducible therapeutic effects, the presence of the transplanted stem cells in the regenerating tissue is not observed. These observations suggest that the predominant therapeutic effect of stem cells is conferred through the release of therapeutic factors. In fact, conditioned media from adult stem cell populations are able to improve ischemic damage to kidney and heart, which confirms the presence of factors released by stem cells in mediating tissue regeneration after injury (van Koppen A, et al., PLoS One 2012, 7:e38746; Timmers L, et al., Stem Cell Res 2007, 1:129–137). Additionally, the secretion of factors such as interleukin-10 (IL-10), indoleamine 2,3-dioxygenase (IDO), interleukin-1 receptor antagonist (IL-1Ra), transforming growth factor-beta 1 (TGF-β1), prostaglandin E2 (PGE2), and tumor necrosis factor-alpha-stimulated gene/protein 6 (TSG-6) has been implicated in conferring the anti-inflammatory effects of stem cells (Pittenger M: Cell Stem Cell 2009, 5:8–10). These observations cohere with the positive clinical effects of MSCs in treating Crohn’s disease and graft-versus-host disease (Caplan AI, Correa D. Cell Stem Cell 2011, 9:11–15).

Another stem cell population called muscle-derived stem/progenitor cells, which are related to MSCs, can also extend the life span of mice that have the equivalent of an aging disease called progeria. These muscle-derived stem/progenitor cells work through a paracrine mechanism (i.e. the release of locally acting substances from cells; see Lavasani M, et al., Nat Commun 2012, 3:608). However, it is unclear what factors released by functional stem cells are important for facilitating tissue regeneration after injury, disease, or aging and the precise mechanism through which these factors exert their effects. Recently, several groups have demonstrated the potent therapeutic activity of small vesicles called exosomes that are released by stem cells (Gatti S, et al., Nephrol Dial Transplant 2011, 26:1474–1483; Bruno S, et al., PLoS One 2012, 7:e33115; Lai RC, et al., Regen Med 2013, 8:197–209; Lee C, et al., Circulation 2012, 126:2601–2611; Li T, et al., Stem Cells Dev 2013, 22:845–854). Exosomes are a type of membrane vesicle with a diameter of 30 to 100 nm released by most cell types, including stem cells. They are formed by the inverse budding of the multivesicular bodies and are released from cells upon fusion of multivesicular bodies with the cell membrane (Stoorvogel W, et al., Traffic 2002, 3:321–330).

Exosomes are distinct from larger vesicles, termed ectosomes, which are released by shedding from the cell membrane. The protein content of exosomes depends on the cells that release them, but they tend to be enriched in certain molecules, including adhesion molecules, membrane trafficking molecules, cytoskeleton molecules, heat-shock proteins, cytoplasmic enzymes, and signal transduction proteins. Importantly, exosomes also contain functional mRNA and microRNA molecules. The role of exosomes in vivo is hypothesized to be for cell-to-cell communication, transferring proteins and RNAs between cells both locally and at a distance.

To examine the regenerative effects of MSCs derived from human umbilical cord, Zhou and colleagues used a rat model of acute kidney toxicity induced by treatment with the anti-cancer drug cisplatin. After treatment with cisplatin, rats show increases in blood urea nitrogen and creatinine levels (a sign of kidney dysfunction) and increases in apoptosis, necrosis, and oxidative stress in the kidney. If exosomes purified from hucMSCs, termed hucMSC-ex are injected underneath the renal capsule into the kidney, these indices of acute kidney injury decrease. In cell culture, huc-MSC-exs promote proliferation of rat renal tubular epithelial cells in culture. These results suggest that hucMSC-exs can reduce oxidative stress and programmed cell death, and promote proliferation. What is not clear is how these exosomes pull this off. Zhou and colleagues provide evidence that hucMSC-ex can reduce levels of the pro-death protein Bax and increase the pro-survival Bcl-2 protein levels in the kidney to increase cell survival and stimulate Erk1/2 to increase cell proliferation.

Another research group has reported roles for miRNAs and antioxidant proteins contained in stem cell-derived exosomes for repair of damaged renal and cardiac tissue (Cantaluppi V, et al., Kidney Int 2012, 82:412–427). In addition, MSC exosome-mediated delivery of glycolytic enzymes (the pathway that degrades sugar) to complement the ATP deficit in ischemic tissues was recently reported to play an important role in repairing the ischemic heart (Lai RC, et al., Stem Cell Res 2010, 4:214–222). Clearly, stem cell exosomes contain many factors, including proteins and microRNAs that can contribute to improving the pathology of damaged tissues.

The significance of the results of Zhou and colleagues and others is that stem cells may not need to be used clinically to treat diseased or injured tissue directly. Instead, exosomes released from the stem cells, which can be rapidly isolated by centrifugation, could be administered easily without the safety concerns of aberrant stem cell differentiation, transformation, or recognition by the immune system. Also, given that human umbilical cord exosomes are therapeutic in a rat model of acute kidney injury, it is likely that stem cell exosomes from a donor (allogeneic exosomes) would be effective in clinical studies without side effects.

These are fabulously interesting results, but Zhou and colleagues have also succeeded in raising several important questions. For example: What are the key pathways targeted by stem cell exosomes to regenerate injured renal and cardiac tissue? Are other tissues as susceptible to the therapeutic effects of stem cell exosomes? Do all stem cells release similar therapeutic vesicles, or do certain stem cells release vesicles targeting only specific tissue and regulate tissue-specific pathways? How can the therapeutic activity of stem cell exosomes be increased? What is the best source of therapeutic stem cell exosomes?

Despite these important remaining questions, the demonstration that hucMSCderived exosomes block oxidative stress, prevent cell death, and increase cell proliferation in the kidney makes stem cell-derived exosomes an attractive therapeutic alternative to stem cell transplantation.

See Dorronsoro and Robbins: Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Research & Therapy 2013 4:39.

Reducing the Heart Scar After a Heart Attack


After a heart attack, inflammation in the heart kills off heart muscle cells and fibroblasts in the heart make a protein called collagen, which forms a heart scar. The heart scar does not contract and does not conduct electrochemical signals. The scar will contract over time, but its presence can lead to abnormal heart rhythms, also known as arrhythmias. Arrythmias can be fatal, since they can cause a heart attack. To prevent a heart attack, physicians will treat heart attack patients with a group of drugs called beta-blockers that slow down the heart rate and protect the heart from the deleterious effects of norepinephrine (secreted by the sympathetic nerve inputs to the heart). An alternative treatment is digoxin or digitalis, which is a chemical found in foxglove. Digitalis inhibits ion pumps in heart muscle cells and slows the heart and the force of its contractions. Digitalis, however, interacts with a whole shoe box fill of drugs, has a very long half-life, and is hard to dose. Therefore it is not the first choice.

Given all this, helping the heart to make a smaller heart scar is a better strategy for treating a heart after a heart attack. To accomplish this, you need to inhibit the heart fibroblasts that make the heart scar in the first place. Secondly, you must move something into the place of the dead cells. Otherwise, the heart could burst or scar tissue will move into the area anyway.

To that end, Yigang Wang and his colleagues at the University of Cincinnati Medical Center in Ohio have published an ingenious paper in which they tried two different strategies to reduce the size of the heart scar, which concomitantly increased the colonization of the heart by induced pluripotent stem cells engineered to express a sodium-calcium exchange pump.

Previously, Wang and his colleagues used a patch to heal the heart after a heart attack. The patch consisted of endothelial cells, which make blood vessels, induced pluripotent stem cells engineered to make a sodium-calcium exchange pump called NCX1, and embryonic fibroblasts. This so-called tri-cell patch makes new blood vessels, establishes new heart muscle, and the foundational matrix molecules to form a platform for beating heart muscle.

In order to get these cells to spread throughout the injured heart, Wang and others used a reagent that specifically inhibits heart fibroblasts. They used a small non-coding RNA molecule. A group of microRNAs called miR-29 family are downregulated after a heart attack. As it turns out, these microRNAs inhibit a group of genes that involved in collagen deposition. Therefore, by overexpressing miR-29 microRNAs, they could prevent collagen deposition and reduce scar formation.

The experimental design in this paper is rather complex. Therefore, I will go through it slowly. First, they tried to overexpress miR-29 microRNAs in cultured heart fibroblasts and sure enough, they inhibited collagen synthesis. Cells overexpressing miR-29 made less than a third of the collagen of their normal counterparts. When they placed these fibroblasts into the heart and induced heart attacks, again, they made significantly less collagen when they were expressing miR-29.

Then they used their miR-29 RNAs by injecting them directly into the heart before inducing a heart attack, and then after the heart attack, they applied the tri-patch. Their results were significant. The scar size was smaller (almost one-third the size of the controls), and the density of blood vessels was much higher in the tri-patched hearts treated with miR-29. The induced pluripotent stem cells differentiated into heart muscle cells and spread throughout the heart. Heart function measures also consistently went up too.  The echiocardiograph before more normal, the ejection fraction went up, the % shortening of the heart muscle fibers was increased, and the relaxation phase of the heart (diastole) also was not so puffy (see graphs and figures below).

(A): M-mode echocardiograph data in three groups. (B): Quantification analysis for heart function. Quantitative data for LVDd (B-1), LVDs (B-2), EF (B-3), and FS (B-4) 4 weeks after Tri-P implantation. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. Anti-29b+MI+Tri-P group. LVDd, left ventricular enddiastolic diameters; LVDs, left ventricular end-systolic diameters; EF, ejection fraction index; FS, fractional shortening. All values expressed as mean 6 SEM. n = 6 for each group. (C): Two-D mode echocardiograph data in three groups, analyzed by long-axis and short-axis views. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. miR-29b+MI+Tri-P group. Ctrl, control mimic pretreatd rat with Tri-cell patch graft; miR-29b, miR- 29b mimic pretreated rat with Tri-cell patch graft; Anti-29b, miR-29b inhibitor pretreated rat with Tri-cell patch graft. White dotted lines indicate endocardium and epicardium.
(A): M-mode echocardiograph data in three groups. (B): Quantification analysis for heart function. Quantitative data for LVDd (B-1), LVDs (B-2), EF (B-3), and FS (B-4) 4 weeks after Tri-P implantation. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. Anti-29b+MI+Tri-P group. LVDd, left ventricular enddiastolic diameters; LVDs, left ventricular end-systolic diameters; EF, ejection fraction index; FS, fractional shortening. All values expressed as mean 6 SEM. n = 6 for each group. (C): Two-D mode echocardiograph data in three groups, analyzed by long-axis and short-axis views. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. miR-29b+MI+Tri-P group. Ctrl, control mimic pretreatd rat with Tri-cell patch graft; miR-29b, miR-29b mimic pretreated rat with Tri-cell patch graft; Anti-29b, miR-29b inhibitor pretreated rat with Tri-cell patch graft. White dotted lines indicate endocardium and epicardium.

There is a cautionary note to this study. Inhibiting collagen formation after a heart attack could create soft fragile regions of the heart that are subject to rupture should the vascular systolic pressure increase. While that threat was not observed in this study, human hearts, which are much larger, would be much more susceptible to such a mishap. Therefore, while this study is interesting and suggest a strategy in humans, it requires more testing and refinement before anyone can even think about applying it to humans.

Genomic Imprinting Maintains A Reserve Pool of Blood-Forming Stem Cells


Hematopoietic stem cells or HSCs reside in the bone marrow and give rise to the wide variety of specialized blood cells that inhabit our bloodstreams. Within the bone marrow, HSCs come in two varieties: an active arm of HSCs that proliferate continually to replace our blood cells and a reserve arm that sits and quietly waits for their time to come.

New research from the Stowers Institute at Kansas City, Mo, in particular a research team led by Linheng Li, discovered a mechanism that helps maintain the balance between those HSCs kept in reserve and those on active duty.

According to Dr. Li, genomic imprinting, a process that specifically shuts off one of the two gene copies found in each mammalian cell , prevents the HSCs held in reserve from being switched to active duty prematurely.

Li explained: “Active HSCs form the daily supply line that continually replenishes worn-out blood and immune cells while the reserve pool serves as a backup system that replaces damaged active HSCs and steps in during times of increased need. In order to maintain a long-term strategic reserve of hematopoietic stem cells that lasts a lifetime it is very important to ensure that the back-up crew isn’t mobilized all at once. Genomic imprinting provides an additional layer of regulation that does just that.”

Sexual reproduction produces progeny that have once set of chromosomes from the mother and one set of chromosomes from the father. The vast majority of genes are expressed from both sets of chromosomes. However, in placental mammals and marsupial mammals a small subset of genes are imprinted, which means that they receive a mark during the development of eggs and sperm and these marks shut down expression of those genes in either the sperm pronucleus or the egg pronucleus. Therefore, after the fusion of the sperm and the egg and the eventual fusion of the egg and sperm pronuclei, these imprinted genes are only expressed from one copy of genes. Some are only expressed from the paternal chromosomes and others are only expressed from the maternal chromosome. Imprinting is essential for normal development in mammals.

The importance of genetic imprinting is shown if an egg loses its pronucleus and is then fertilized by two sperms. The resulting zygote has two copies of paternal chromosomes and no copies of the maternal chromosomes. Such an embryo is called an andogenote, and the embryo fails to form but the placenta overgrows. If this occurs during human development, it can lead to a so-called “molar pregnancy” or “hydatiform mole.” This fast growing placental tissue can become cancerous and lead to uterine cancer. For that reason, molar pregnancies are usually dealt with expeditiously.

However, if the sperm that fertilizes the egg is devoid of a pronucleus, and the egg pronucleus duplicates, then the resulting zygotes can two copies of the maternal chromosomes, and this entity is known as a gynogenote, and it develops with a poorly formed placenta that dies early in development.

In previous experiments in mice, Li and his colleagues indicated that the expression of several imprinted genes changes as HSCs transition from quiescent reserve cells to multi-lineage progenitor cells.

In their current study, Li and other Stowers Institute researchers examined a differentially imprinted control region, which drives the reciprocal expression of a gene called H19 from the maternal chromosome and IGF2 (insulin-like growth factor-2) from the paternal chromosome.

The first author of this study, Aparna Venkatraman developed a mouse model that allowed her to specifically delete the imprinted copy from the maternal chromosome. Thus, in these mice, H19, which restricts growth, was no longer active and Igf2,, which promotes cell division, was now active from the paternal and the maternal chromosome. To access the effect of this loss of imprinting on the maintenance of HSCs, Venkatraman examined the numbers of quiescent HSCs and active HSCs. in mouse bone marrow.

Venkatraman explained: “A large number of quiescent HSCs was activated simultaneously when the epigenetic control provided by genomic imprinting was removed. It created a wave of activated stem cells that moved through different maturation stages.”

She followed this experiment with a closer look at the Igf2 gene. Misregulation of Igf2 leads to overgrowth syndromes such as Beckwith-Wiedmann Syndrome. It exerts its growth promoting effects through the Igf1 receptor, which induces an intracellular signaling cascade that stimulates cell proliferation.

IGF signaling pathway
IGF signaling pathway

The expression of the Igf1 receptor itself is regulated by H19, which encodes a regulatory microRNA (miR-675) that represses translation of the Igf1 receptor gene and therefore prevents production of Igf1 receptor protein. Venkatraman explained that once the “imprinting block is lifted, the Igf2-Igf1r signaling pathway is activated.” Venkatraman continued: “The resulting growth signal triggers the inappropriate activation and proliferation of quiescent HSCs, which eventually leads to the premature exhaustion of the reserve [HSC] pool.”

Interestingly, the roundworm, Caenorhabditis elegans, provided the first clues that diminished insulin/IGF signaling can increase lifespan and delay aging. Li again: “Here the IGF pathway is conserved by subject to imprinting, which inhibits its activation in quiescent reserve stem cells. This ensures the long-term maintenance of the blood system, which in turn supports the longevity of the host.”

Recovery of the Brain After a Stroke


A stroke results when the brain suffers from “ischemia” or a lack of blood flow for an extended period of time. Blockage in the small vessels that feed blood to the brain can cause a trans-ischemic attack (TIA) or stroke. The lack of oxygen causes localized death of brain cells. The dying cells dump a whole gaggle of molecules into the spaces surrounding nearby brain cells, and these cell-derived molecules can actually poison surrounding cells, thus increasing the area that dies as a result of a stroke.

Stroke pathology

New work from by Henry Ford Hospital researchers in Detroit, Michigan suggests that some of the molecules released by brain cells during a stroke might actually help the brain heal after a stroke. Small RNA molecules or microRNAs that are packaged into lipid-bound vesicles in cells known as exosomes are released by stem cells after a stroke and seem to contribute to neurological recovery.

Exosomes are secreted vesicles that were first discovered nearly 30 years ago. They were, at first, considered little more than garbage cans whose job was to discard unwanted cellular components. However, once cell biologists began to study these little structures, evidence began to accumulate that these dumpsters also act as messengers that convey information to distant tissues. Exosomes contain cell-specific payloads of proteins, lipids, and genetic material that are transported to other cells, where they alter function and physiology.

Exosome_Basics

Therefore, it is little wonder that exosomes can also transport microRNAs. In this present study from the laboratory of Michael Chopp, rats were given experimentally induced strokes, and then the neurological recovery of the rats was examined at the molecular level.

Chopp and his colleagues first isolated mesenchymal stem cells (MSCs) from the bone marrow of their laboratory rats. Then they genetically engineered these MSCs to release exosomes laden with specific microRNAs; in particular miR-133b.

MicroRNAs are a class of post-transcriptional regulators. Since they are usually only about 22 base pairs in length, they are far too short to encode anything. microRNAs usually bind to complementary sequences in the 3’ untranslated region of messenger RNAs, and this binding silences the RNA, which simply means that the RNA cannot be recognized by ribosomes and will not be translated into protein, or that the RNA is degraded by special enzymes that target RNAs bound by microRNAs. Single microRNAs target hundreds genes at a time, and some 60% of all genes are regulated by microRNAs. MicroRNAs are abundantly present in all human cells. They are also highly conserved in organisms ranging from the unicellular algae Chlamydomonas reinhardtii to mitochondria in vertebrates, which suggest that they are a vital part of genetic regulation throughout the plant and animal kingdoms.

The Actions of Small Silencing RNAs (A) Messenger RNA cleavage specified by a miRNA or siRNA. Black arrowhead indicates site of cleavage. (B) Translational repression specified by miRNAs or siRNAs. (C) Transcriptional silencing, thought to be specified by heterochromatic siRNAs.
The Actions of Small Silencing RNAs
(A) Messenger RNA cleavage specified by a miRNA or siRNA. Black arrowhead indicates site of cleavage.
(B) Translational repression specified by miRNAs or siRNAs.
(C) Transcriptional silencing, thought to be specified by heterochromatic siRNAs.

The microRNA known as miR-133b has been shown to enhance the death of prostate cancer cells when they are delivered to them (see Patron JP, Fendler A, Bild M, Jung U, Müller H, et al. (2012) MiR-133b Targets Antiapoptotic Genes and Enhances Death Receptor-Induced Apoptosis. PLoS ONE 7(4): e35345. doi:10.1371/journal.pone.0035345). However, because different cell types show different responses to the same reagents, exposing brain cells to this microRNA after a stroke might elicit a very different response.

By raising or lowering the amount of miR-133b in MSCs, Chopp and his colleagues were able to determine the effects of miR-133b on brains cells after a stroke. Chopp and others injected their genetically engineered MSCs into the bloodstream of rats 24 hours after inducing a stroke in these animals. When the exosomes of the MSCs were enriched in miR-133b, the neurological recovery in the rats was amplified, but when injected MSCs were deprived of miR-133b, the neurological recovery was substantially less.

To measure neurological recovery, researchers separated the disabled rats into several groups and injected each groups with saline, nongenetically-engineered MSCs, MSCs with low levels of miR-133b, and MSCs with high levels of miR-133b. The rats were given behavioral tests 3, 7, and 14 days after treatment. These tests measured the gait of the animals on a grid to determine if the rats could walk on an unevenly spaced grid (foot-fault test). The second test determined how long it took the rats to remove a piece of adhesive tape that was stuck to their front paws.

in every test, the rats injected with miR-133b-enriched MSCs showed superior levels of neurological recovery. Autopsies of these same animals revealed that the rats treated with miR-133b-enriched MSCs had enhanced rewiring of the brain and axonal outgrowth. In the areas of the brain adversely affected by the stroke, the rats showed increased axonal plasticity and neurite remodeling.

Most stroke victims recover some ability to use their hands and other body parts on a voluntary basis, but almost half of all stroke victims are left with some weakness on one side of their body and many are permanently disabled by the stroke.

No treatment presently exists for improving or restoring this lost motor function in stroke patients, mainly because of mysteries about how the brain and nerves repair themselves.

Chopp said, “This study may have solved one of these mysteries by showing how certain stem cells play a role in the brain’s ability to heal itself to differing degrees after stroke or other trauma. Chopp also serves as the scientific director of the Henry Ford Neuroscience Institute.

RNA Molecule Protects Stem Cells During Inflammation


During inflammation and infection, bone marrow stem cells that make blood cells (so-called hematopoietic stem cells or HSCs) and progenitor cells are stimulated to proliferate and differentiate into mature immune cells. This especially the case for cells of the so-called “myeloid lineage.

Hematopoietic Stem Cells (HSCs) are able to differentiate into cells of two primary lineages, lymphoid and myeloid. Cells of the myeloid lineage develop during the process of myelopoiesis and include Granulocytes, Monocytes, Megakaryocytes, and Dendritic Cells. Circulating Erythrocytes and Platelets also develop from myeloid progenitor cells.

Hematopoiesis from Multipotent Stem Cell

Repeated infections and inflammation can deplete these cell populations, which leads to serious blood conditions and increased incidence of cancer.

A research team from the California Institute of Technology, led by Nobel Prize winner, David Baltimore, has discovered a small RNA molecule called microRNA-146a (miR-146a) that acts as a safety valve to protect HSCs during chronic inflammation. These findings also suggest that deficiencies for miR-146a might contribute to blood cancers and bone marrow failure.

Baltimore and his colleagues bred mice that lacked miR146a. MicroRNAs are very short RNA molecules (around 22 base pairs long) that regulate the activities of other genes. They control the expression of genes at the transcriptional and post-transcriptional level. In the case of miR146a(-) mice, whenever these mice were subjected to chronic inflammation, the total number and quality of their HSCs declined steadily. In contrast, miR-146a(+) mice were better able to maintain their levels of HSCs despite long-term inflammation.

The lead author of this work, Jimmy Zhao, said, “This mouse with genetic deletion of miR146a is a wonderful model with which to understand chronic inflammation-driven tumor formation and hematopoietic stem cell biology during chronic inflammation.”

Zhao also noted the surprising result that the deletion of one microRNA could cause such a profound and dramatic pathology. This underscores the critical and indispensable function of miR-146a in protecting the quality and longevity of HSCs. This work also establishes the connection between chronic inflammation and bone marrow failure and diseases of the blood.

Even more exciting is the prospect of synthesizing anti-inflammatory drugs that could treat blood disorders. In fact, it is possible that artificially synthesized miR146a might be an effective treatment if small RNAs can be effectively delivered to specific cells.

Zhao also noted the close resemblance that this mouse model has to the blood disorder human myelodysplastic syndrome or MDS. MDS is a form of pre-leukemia that causes severe anemia and a dependence on blood transfusions. MDS usually leads to acute myeloid leukemia. Further study of Zhao and Baltimore’s miR146a(-) mouse might lead to a better understanding of MDS and potential new treatments for MDS.

David Baltimore, senior author of this paper, said, “This study speaks of the importance of keeping chronic inflammation in check and provides a good rationale for broad use of safer and more effective anti-inflammatory molecules. If we can understand what cell types and proteins are critically important in chronic-inflammation-driven tumor formation and stem cell exhaustion, we can potentially design better and safer drugs to intervene.”

See Jimmy L Zhao, Dinesh S Rao, Ryan M O’Connell, Yvette Garcia-Flores, David Baltimore. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice.  DOI: http://dx.doi.org/10.7554/eLife.00537Published May 21, 2013.  Cite as eLife 2013;2:e00537.

Postscript: This paper is especially meaningful to me because my mother died of MDS. The fact that a better model system for MDS has been established is an essential first step in finding a treatment for this killer disease.