Stem Cells from Muscle Can Repair Nerve Damage After Injury


Researchers from the University of Pittsburgh School of Medicine have discovered that stem cells derived from human muscle tissue can repair nerve damage and restore function in an animal model of sciatic nerve injury. These data have been recently published online in the Journal of Clinical Investigation, but more importantly, this work demonstrates the feasibility of cell therapy for certain nerve diseases, such as multiple sclerosis.

Presently there are few treatments for peripheral nerve damage. Peripheral nerve damage can leave patients with chronic pain, impaired muscle control and decreased sensation.

The senior author of this work, Henry J. Mankin, serves as the Chair in Orthopedic Surgery Research, Pitt School of Medicine, and deputy director for cellular therapy, McGowan Institute for Regenerative Medicine, and said, “This study indicates that placing adult, human muscle-derived stem cells at the site of peripheral nerve injury can help heal the lesion. The stem cells were able to make non-neuronal support cells to promote regeneration of the damaged nerve fiber.”

Muscle-derived stem cells

Workers in Mankin’s laboratory, in collaboration with Dr. Mitra Lavasani, assistant professor of orthopedic surgery, Pitt School of Medicine, grew human muscle-derived stem/progenitor cells in culture by using a culture medium suitable for nerve cells. In culture, Lavasani, Mankin and their colleagues found that when these muscle-derived stem cells were grown in the presence of specific nerve-growth factors, they differentiated into neurons and glial cells. Glial cells act as support cells from neurons. One type of glial cell that these muscle-derived stem cells could differentiate into was Schwann cells, which are the cells that form the myelin sheath around the axons of neurons to accelerate the speed at which nerve impulses are conducted.

Schwann Cell

Mankin and his colleagues then injected these human muscle-derived stem/progenitor cells into mice that had a quarter-inch injury in their right sciatic nerve. The sciatic nerve controls right leg movement. Six weeks later, the nerve had fully regenerated in stem-cell treated mice, but the untreated group showed only limited nerve regrowth and functionality. In other tests, 12 weeks after treatments, the stem cell-treated mice were able to keep their treated and untreated legs balanced at the same level while being held vertically by their tails. When the treated mice ran through a special maze, analyses of their paw prints showed that their gait, which had been abnormal, was now completely normal. Finally, treated and untreated mice experienced loss of muscle mass after nerve damage, but only the stem cell-treated mice regained normal muscle mass by 72 weeks after nerve damage.

sciatic-nerve

“Even 12 weeks after the injury, the regenerated sciatic nerve looked and behaved like a normal nerve,” Dr. Lavasani said. “This approach has great potential for not only acute nerve injury, but also conditions of chronic damage, such as diabetic neuropathy and multiple sclerosis.”

Drs. Huard and Lavasani and the team are now trying to understand how the human muscle-derived stem/progenitor cells triggered injury repair. They are also developing delivery systems, such as gels, that could hold the cells in place at larger injury sites.

The co-authors of this paper included Seth D. Thompson, Jonathan B. Pollett, Arvydas Usas, Aiping Lu, Donna B. Stolz, Katherine A. Clark, Bin Sun, and Bruno Péault, all of whom are from the University of Pittsburgh.

Making Heart Muscle from Skeletal Muscle Stem Cells


Several experiments in animals and a few clinical trials in human patients have shown that implanting skeletal muscle cells isolated from muscle biopsies into the heart after a heart attack can help the heart to some degree, but the implanted skeletal muscle cells do not integrate into the existing heart muscle mass and the skeletal muscle cells do not differentiate into heart muscle cells.

Experiments like those mentioned above utilized muscle satellite cells. Muscle satellite cells are a resident stem cell population that respond to muscle damage and divide to form skeletal muscle cells form new muscle. Satellite cells are a perfect example of a unipotent stem cell, which is to say a cell that makes one type of terminally differentiated cell type.

Skeletal muscles, however, have another cell population called muscle-derived stem cells or MDSCs. MDSCs express an entirely different set of cell surface proteins than satellite cells, and have the capacity to differentiate into skeletal muscle, smooth muscle, bone, tendon, nerve, endothelial and hematopoietic cells. MDSCs grow well in culture, tolerate low oxygen conditions quite well, and show excellent regenerative potential.

Other laboratories have managed to culture MDSCs in collagen and produce beating heart muscle cells. Others have observed MDSCs forming a proper myocardium under certain conditions. Several studies have established the ability to MDSCs to treat laboratory animals that have suffered a heart attack. The most recent work from Sekiya and others has established that cell sheets made from MDSCs can reduce dilation of the left ventricle, increased capillary density, and promoted recovery without causing erratic heat beat patterns.

Despite their obvious efficacy. MDSCs remain difficult to isolate in high enough numbers to therapeutic purposes. None of the cell surface molecules sported by MDSCs are unique to those cells. Therefore, getting clean cultures of MDSCs remains a challenge. Still, these cells represent some of the best hopes for regenerative medicine in the heart. These cells do form heart muscle cells and heal ailing hearts. They can be grown in bioreactors to high numbers and can also be combined with engineered materials to shore up a damaged heart and mediate its regeneration. While the use of MDSCs is still in its infancy, the promise certainly is there.

BMP-2 Release By Synthetic Coacervates Improves Bone Making Ability of Muscle Stem Cells


Johnny Huard and his co-workers from the McGowan Institute for Regenerative Medicine at the University of Pittsburgh have isolated a slowly-adherent stem cell population from skeletal muscle called muscle-derived stem cells or MDSCs (see Deasy et al Blood Cells Mol Dis 2001 27: 924-933). These stem cells can form bone and cartilage tissue in culture when induced properly, but more importantly when MDSCs are engineered to express the growth factor Bone Morphogen Protein-2 (BMP-2), they make better bone and do a better job of healing bone lesions than other engineered muscle-derived cells (Gates et al., J Am Acad Orthop Surg 2008 16: 68-76).

In most experiments, MDSCs are infected with genetically engineered viruses to deliver the BMP-2 genes, but the use of viruses is not preferred if such a technique is to come to the clinic. Viruses elicit and immune response and can also introduce mutations into stem cells. Therefore a new way to introduce BMP-2 into stem cells is preferable.

To that end, Huard and his colleagues devised an ingenious technique to feed BMP-2 to implanted MDSCs without using viruses. They utilized a particle composed of heparin (a component of blood vessels) and a synthetic molecule called poly(ethylene arginylaspartate diglyceride), which is mercifully abbreviated PEAD. The PEAD-heparin delivery system formed a so-called “coacervate,” which is a tiny spherical droplet that is held together by internal forces and composed of organic molecules. These PEAD-heparin coacervates could be loaded with BMP-2 protein and they released slowly and steadily to provide the proper stimulus to the MDSCs to form bone.

When tested in culture dishes, the BMP-2-loaded coacervates more than tripled the amount of bone made by the MDSCs, but when they were implanted in living rodents the presence of the BMP-2-loaded coacervates quadrupled the amount of bone made by the MDSCs.

This technique provides a way to continuously deliver BMP-2 to MDSCs without using viral vectors to infect them. These carriers do inhibit the growth or function of the MDSCs and activate their production of bone.

This paper used a “heterotropic bone formation assay” which is to say that cells were injected into the middle of muscle and they formed ectopic bone. The real test is to see if these cells can repair actual bone lesions with this system.

Muscle-Derived Stem Cells And Platelet-Rich Plasma Improve Cartilage Formation


Skeletal muscle contains a stem cell population called muscle derived stem cells or MDSCs that might have tremendous therapeutic potential. MDSCs have been isolated from skeletal muscle by means of their ability to adhere to culture flasks coated with collagen. Samples of muscle taken from a biopsy are mechanically mashed and then treated with enzymes the separate the cells. These cells are plated onto collagen-coated dishes and the cells either adhere quickly (fibroblasts and myoblasts), or slowly (MDSC-enriched fraction).

Skeletal muscle contains another cell population known as satellite cells. Satellite cells can divide and form muscle progenitor cells known as myoblasts that fuse to form myotubes. MDSCs, however, as distinct from satellite cells. They express different sets of genes: satellite cells typically express Pax7, whereas MDSCs are more heterogeneous but express Sca-1 consistently and often express CD34.

Studies in culture and in living animals have established that MDSCs can self-renew and differentiate into multiple lineages. They also have the potential to regenerate various adult tissues. See Usas A, et al Medicina (Kaunas) 2011;47:469–479; Cao B, et al Nat Cell Biol. 2003;5:640–646; Deasy BM, et al Blood Cells Mol Dis. 2001;27:924–933.

MDSCs also display a superior regenerative capacity relative to satellite cells following transplantation into mice with a form of rodent muscular dystrophy (mdx mice). MDSCs are at least partially invisible to the immune system. When transplanted into mdx mice and left for at least 3 months, no sign of immune rejection was detected.

The laboratory of Johnny Huard at the University of Pittsburgh has been genetically engineering MDSCs from mouse for use as cartilage making cells to treat rodents with osteoarthritis. In 2009, Huard’s group published an intriguing paper in the journal Arthritis and Rheumatism in which they genetically engineered MDSCs with two genes: Bone Morphogenetic Protein 4 (BMP-4) and Soluble Flt-1. If you are wondering what the heck these two genes encode, then you are not alone. BMP-4 is a secreted signaling protein that is very important for bone healing, but it also plays a central role in helping cartilage-making cells (chondrocytes) survive and divide. Flt-1 is one of the receptor proteins that binds the growth factor VEGF (vascular endothelial growth factor).  Normally, VEGF forms blood vessels and remodels existing blood vessels.  However, when it comes to cartilage, VEGF tends to cause cartilage to die back.  Therefore, Huard’s group used a soluble version of Flt-1, which scavenged the available VEGF in the environment and bound it up.

In their 2009 paper, Huard and others showed that BMP-4/soluble Flt-1-expressing MDSCs did a remarkable job of making new cartilage and repairing damage joint cartilage in rodents.  See Tomoyuki Matsumoto, et al ARTHRITIS & RHEUMATISM Vol. 60, No. 5, May 2009, pp 1390–1405.

A and B, Macroscopic (A) and histologic (B) evaluation of representative joints from rats injected with muscle-derived stem cells (MDSCs) transduced with soluble Flt-1 (sFlt-1) and bone morphogenetic protein 4 (BMP-4 [B4]) (sFlt-1/BMP-4–MDSC), MDSCs transduced with vascular endothelial growth factor (VEGF) and BMP-4 (VEGF/BMP-4–MDSC), MDSCs transduced with BMP-4 alone (BMP-4–MDSC), nontransduced MDSCs (MDSC), or phosphate buffered saline (PBS) alone, 4 and 12 weeks after transplantation. Four weeks after transplantation, the sFlt-1/BMP-4–MDSC and BMP-4–MDSC groups macroscopically and histologically showed smooth joint surface with well-repaired articular cartilage and Safranin O–positive hyaline-like cartilage (red staining in B). However, the other groups showed marked arthritic progression, synovial hypertrophy, and osteophyte formation (arrows). Twelve weeks after transplantation, although the sFlt-1/BMP-4–MDSC group still showed well-repaired articular cartilage, the other groups exhibited more severe arthritis compared with 4 weeks. (Original magnification  100.) C, Semiquantitative histologic scores for all groups, 4 and 12 weeks following transplantation. The sFlt-1/BMP-4–MDSC group had the lowest (best) scores of all groups. Bars show the mean and SEM.   P   0.05 versus all other groups;   P   0.05 versus the VEGF/BMP-4–MDSC, MDSC, and PBS groups.
A and B, Macroscopic (A) and histologic (B) evaluation of representative joints from rats injected with muscle-derived stem cells (MDSCs) transduced with soluble Flt-1 (sFlt-1) and bone morphogenetic protein 4 (BMP-4 [B4]) (sFlt-1/BMP-4–MDSC), MDSCs transduced with vascular endothelial growth factor (VEGF) and BMP-4 (VEGF/BMP-4–MDSC), MDSCs transduced with BMP-4 alone (BMP-4–MDSC), nontransduced MDSCs (MDSC), or phosphate buffered saline (PBS) alone, 4 and 12 weeks after transplantation. Four weeks after transplantation, the sFlt-1/BMP-4–MDSC and BMP-4–MDSC groups macroscopically and histologically showed smooth joint surface with well-repaired articular cartilage and Safranin O–positive hyaline-like cartilage (red staining in B). However, the other groups showed marked arthritic progression, synovial hypertrophy, and osteophyte formation (arrows). Twelve weeks after transplantation, although the sFlt-1/BMP-4–MDSC group still showed well-repaired articular cartilage, the other groups exhibited more severe arthritis compared with 4 weeks. (Original magnification  100.) C, Semiquantitative histologic scores for all groups, 4 and 12 weeks following transplantation. The sFlt-1/BMP-4–MDSC group had the lowest (best) scores of all groups. Bars show the mean and SEM.   =P<0.05 versus all other groups;  =P<0.05 versus the VEGF/BMP-4–MDSC, MDSC, and PBS groups.
In another paper that came out in January of this year, Huard has used platelet-rich plasma with his engineered MDSCs to determine with platelet-rich plasma (PRP) can increase the cartilage-making activity of engineered MDSCs.

Since PRP has been reported to promote the synthesis of collagen and cell proliferation, and increase cartilage repair, it is possible that, when paired with the right stem cells, PRP can enhance cartilage repair.  To test this suspicion, MDSCs expressing BMP-4 and sFlt1 were mixed with PRP and injected into the knees of rats whose immune system did not work properly that had osteoarthritis.  Osteoarthritis can be chemically induced in rats rather easily, and the rats were treated with MDSCs expressing BMP-4 and sFlt1 or MDSCs expressing BMP-4 and sFlt1 plus PRP.  Tissue assessments of the arthritic joints were performed 4 and 12 weeks after cell transplantation.  Other tests conducted in culture determined the cell proliferation, adhesion, migration and cartilage-making capacities of cells in culture.

The results showed that addition of PRP to MDSCs expressing BMP-4 and sFlt1 significantly improved joint cartilage repair at week 4 compared to MDSCs expressing BMP-4 and sFlt1 alone.  The joints showed higher numbers of cells producing type II collagen and lower levels of chondrocyte cell death were observed by MDSCs expressing BMP-4 and sFlt1 and mixed with PRP.  In culture, the addition of PRP promoted proliferation, adhesion and migration of the MDSCs.  When pellets of cells were induced to make cartilage in culture, PRP tended to increase the number of type II collagen producing cells.

From this, Huard and his colleagues concluded that PRP can promote the cartilage-repairing capacities of MDSCs that express BMP-4 and sFlt1.  This enhancement involves the promotion of collagen synthesis, the suppression of chondrocyte cell death, and by enhancing the integration of the transplanted cells in the repair process.

See Mifune Y, et al Osteoarthritis Cartilage. 2013 Jan;21(1):175-85. doi: 10.1016/j.joca.2012.09.018.