RNA Molecule Protects Stem Cells During Inflammation


During inflammation and infection, bone marrow stem cells that make blood cells (so-called hematopoietic stem cells or HSCs) and progenitor cells are stimulated to proliferate and differentiate into mature immune cells. This especially the case for cells of the so-called “myeloid lineage.

Hematopoietic Stem Cells (HSCs) are able to differentiate into cells of two primary lineages, lymphoid and myeloid. Cells of the myeloid lineage develop during the process of myelopoiesis and include Granulocytes, Monocytes, Megakaryocytes, and Dendritic Cells. Circulating Erythrocytes and Platelets also develop from myeloid progenitor cells.

Hematopoiesis from Multipotent Stem Cell

Repeated infections and inflammation can deplete these cell populations, which leads to serious blood conditions and increased incidence of cancer.

A research team from the California Institute of Technology, led by Nobel Prize winner, David Baltimore, has discovered a small RNA molecule called microRNA-146a (miR-146a) that acts as a safety valve to protect HSCs during chronic inflammation. These findings also suggest that deficiencies for miR-146a might contribute to blood cancers and bone marrow failure.

Baltimore and his colleagues bred mice that lacked miR146a. MicroRNAs are very short RNA molecules (around 22 base pairs long) that regulate the activities of other genes. They control the expression of genes at the transcriptional and post-transcriptional level. In the case of miR146a(-) mice, whenever these mice were subjected to chronic inflammation, the total number and quality of their HSCs declined steadily. In contrast, miR-146a(+) mice were better able to maintain their levels of HSCs despite long-term inflammation.

The lead author of this work, Jimmy Zhao, said, “This mouse with genetic deletion of miR146a is a wonderful model with which to understand chronic inflammation-driven tumor formation and hematopoietic stem cell biology during chronic inflammation.”

Zhao also noted the surprising result that the deletion of one microRNA could cause such a profound and dramatic pathology. This underscores the critical and indispensable function of miR-146a in protecting the quality and longevity of HSCs. This work also establishes the connection between chronic inflammation and bone marrow failure and diseases of the blood.

Even more exciting is the prospect of synthesizing anti-inflammatory drugs that could treat blood disorders. In fact, it is possible that artificially synthesized miR146a might be an effective treatment if small RNAs can be effectively delivered to specific cells.

Zhao also noted the close resemblance that this mouse model has to the blood disorder human myelodysplastic syndrome or MDS. MDS is a form of pre-leukemia that causes severe anemia and a dependence on blood transfusions. MDS usually leads to acute myeloid leukemia. Further study of Zhao and Baltimore’s miR146a(-) mouse might lead to a better understanding of MDS and potential new treatments for MDS.

David Baltimore, senior author of this paper, said, “This study speaks of the importance of keeping chronic inflammation in check and provides a good rationale for broad use of safer and more effective anti-inflammatory molecules. If we can understand what cell types and proteins are critically important in chronic-inflammation-driven tumor formation and stem cell exhaustion, we can potentially design better and safer drugs to intervene.”

See Jimmy L Zhao, Dinesh S Rao, Ryan M O’Connell, Yvette Garcia-Flores, David Baltimore. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice.  DOI: http://dx.doi.org/10.7554/eLife.00537Published May 21, 2013.  Cite as eLife 2013;2:e00537.

Postscript: This paper is especially meaningful to me because my mother died of MDS. The fact that a better model system for MDS has been established is an essential first step in finding a treatment for this killer disease.

Rejuvenating the Blood of Older People With New Stem Cells


Like it or not, the blood of young people and older people is different. Can the blood of an older person be rejuvenated and made young again?

In an article published recently by the scientific journal Blood, a research group at Lund University in Sweden details a series of experiments in which they rejuvenated the blood of mice by reversing, or re-programming, the blood cell-making stem cells.

Stem cell populations throughout the body form and replace cells in the body and help repair organs. Stem cells have the capability to divide an unlimited number of times, and when they divide, one cell remains a stem cell and the other matures into another cell type needed by the body.

Martin Wahlestedt, a doctoral student in stem cell biology at the Faculty of Medicine at Lund University, and principal author of the article explained, “Our ageing process is a consequence of changes in our stem cells over time.” Wahlestedt continued, “Some of the changes are irreversible, for example damage to the stem cells’ DNA, and some could be gradual changes, known as epigenetic changes, that are not necessarily irreversible, even if they are maintained through multiple cell divisions. When the stem cells are re-programmed, as we have done, the epigenetic changes are cancelled.”

Shinya Yamanaka was awarded the Nobel Prize in Medicine last year for this very discovery.

Blood composition changes as we age. For example, blood from a young person contains a certain mix of B- and T-lymphocytes and myeloid cells, but in older people, according to Wahlestedt, “In older people, the number of B- and T-lymphocytes falls, while the number of myeloid cells increases.” Therefore, when an elderly person is affected by leukemia, the cancer usually originates in the myeloid cells, since the elderly have more myeloid cells. Being able to refurbish the blood, as Martin and his colleagues have done in their mouse studies, therefore, presents interesting possibilities for future treatment.

“There is a lot of focus on how stem cells could be used in different treatments, but all that they are routinely used for in clinical work today is bone marrow transplants for diseases where the blood and immune systems have to be regenerated”, said Martin Wahlestedt, continuing:  “A critical factor that gives an indication of whether the procedure is going to work or not is the age of the bone marrow donor. By reversing the development of the stem cells in the bone marrow, it may be possible to avoid negative age-related changes.”

Even if the composition of the blood in old and young mice is remarkably like that in young and elderly people, Martin Wahlestedt stressed that at this stage; the technology is only at the basic research stage and is far from a functioning treatment. The research group is pleased with the results, because they indicate that it may not primarily be damage to DNA that causes blood to age, but rather the reversible epigenetic changes.