Regenerating Nerve Tissue in Spinal Cord Injuries


Severe injuries to the neck during recreational activities such as horseback riding or playing football can permanently alter someone’s life dramatically. With no options for the repair of spinal cord injuries, many are left with little hope for recovery.

New work by researchers at Rush University Medical Center (RUMC) in Chicago is investigating a new therapy that uses stem cells to treat spinal cord injuries within the first 14 to 30 days of injury. Rush is one of only two centers in the country currently studying this new approach.

“There are currently no therapies that successfully reverse the damage seen in the more than 12,000 individuals who suffer a spinal cord injury each year in the United States alone,” says Richard G. Fessler, MD, PhD, professor of neurological surgery at RUMC. An estimated 1.3 million Americans are living with a spinal cord injury.

“These injuries can be devastating, causing both emotional and physical distress, but there is now hope. This is a new era where we are now able to test whether a dose of stem cells delivered directly to the injured site can have an impact on motor or sensory function,” Fessler continued. “If we could generate even modest improvements in motor or sensory function, it would result in significant improvements in quality of life.”

Dr. Fessler is the principal investigator at RUMC of a clinical trial that involves progenitor cells that are likely to develop into a certain cell types. Specifically, this study is studying nerve cells known as oligodendrocyte progenitor cells, which potentially can make poorly functioning nerves function better. A San Francisco Bay-area biotechnology company known as Asterias Biotherapeutics, developed the cells and is sponsoring the trial.

This clinical trial is designed to assess the safety and efficacy of increasing doses of AST-OPC1 to treat individuals with a cervical spinal cord injury that resulted in tetraplegia, the partial or total paralysis of arms, legs and torso. As of mid-August, one individual has been enrolled in the study at Rush and there are high hopes that others will be enrolled as well in the near future.

Three escalating doses of AST-OPC1 will be examined in patients with subacute, neurologically complete injury to the cervical spinal cord (the spinal cord in the neck, specifically, the spinal nerves known as C5 to C7). These individuals essentially have lost all sensation and movement below their injury site and have severe paralysis of the upper and lower limbs.

In order for this therapy to work, the spinal cord must be continuous not severed. Patients must be able to begin treatment within 25 days of their injury.

Fessler and his group will administer AST-OPC1 between 14 to 30 days after sustaining the injury. Following the treatment, patients will receive frequent neurological exams and imaging in order to assess the efficacy of the treatment. Furthermore, patients will be followed for 15 years thereafter.

“If this treatment proves to be safe and effective, in the future, it also might be used for peripheral nerve injury or other conditions that affect the spinal cord, such as multiple sclerosis or ALS,” Fessler says.

The study is recruiting male and female patients ages 18 to 65 who have recently experienced a cervical spinal cord injury at the neck that resulted in partial or total paralysis of arms, legs and torso. All participants must be able to provide consent and commit to a long-term follow-up study.

Stem Cell Treatment Improves the Skin Quality of Children With inherited Skin Blistering Disease


A new stem cell-based therapy has shown some very promising results. This therapy was designed to treat a rare and debilitating skin condition that affects children, for which no cure currently exists. This cell-based therapy provided pain relief and reduced the severity of the skin condition for patients who participated in the clinical trial.

The clinical trial was led by scientists at King’s College London, who collaborated with researchers from the Great Ormond Street Hospital (GOSH). They recruited 10 children afflicted with a disease called recessive dystrophic epidermolysis bullosa (RDEB).

RDEB is a painful skin disease in which very minor skin injury leads to blisters and wounds that tend to heal very slowly or not at all. The skin of RDEB patients is quite fragile and it tends to scar, develops contractures, and is also prone to life-threatening skin cancers.

Dystrophic epidermolysis bullosa
Dystrophic epidermolysis bullosa

This clinical trial, known as the EBSTEM trial, is a The Phase I/II trial whose results were published early online in the Journal of Investigative Dermatology. This study was designed to test the safety of infusions of stem cells and to determine if this treatment could help diminish the severity of the disease and improve quality of life for these patients.

During the first six months of the trial, participants were given three infusions of bone marrow- derived mesenchymal stromal cells from unrelated donors. Mesenchymal stem cells (MSCs) have been shown to home to wounded tissue and mediate wound healing in several previous studies. Although these infused stem cells do not survive permanently, they may still deliver therapeutic benefits.

The treated children were then monitored for a year after these cell infusions. Several different clinical tests failed to reveal any serious adverse effects in patients as a result of the stem cell treatment. When the pain levels of patients were measured, patients consistently reported lower pain levels after the treatment than before the treatment. Also the severity of their disease was also reported to have lessened following the stem cell infusions. Parents of these children reported better wound healing in their children and they also showed less skin redness and fewer blisters.

Overall, the outcomes of the trial are promising. However, this is an unblinded study of participants and may, therefore, contain positive biases in the way the information is reported. In interviews with families, participants reported a range of benefits from sleeping better, to the parents being able to return to work part-time because their children required less intense care. In fact, one family was actually able to plan their first vacation together.

Thus, further work is required to better understand the mechanisms that helped patients improve. Did the stem cells trigger the production of a growth factors and immune system regulators? Did these secreted compounds stimulate wound healing and reduce inflammation in the skin? Or did the presence of the cells somehow improve skin quality? Further studies are also required to confirm the efficacy of the treatment and establish the optimal dose of cells to give RDEB patients.

Stem Cells Inc Spinal Cord Injury Trial Shows Sustained Improvements in Sensory Function


A cellular therapeutic company known as Stem Cells, Incorporated has been carrying out a Phase I/II clinical trial that was specifically designed to assess both safety and preliminary efficacy of their proprietary HuCNS-SC cells as a treatment for chronic spinal cord injury. Recently, Dr. Armin Curt, the principal investigator of this clinical trial, presented a summary of the safety and preliminary efficacy data from this Phase I/II study at the 4th Joint International Spinal Cord Society (ISCoS) and American Spinal Injury Association (ASIA) meeting which was held in Montreal, Canada.

Spinal cord injury patients are classified by a system that was developed by the American Spinal Injury Association (ASIA) and uses grades A through E on the American Spinal Injury Association Impairment Scale (AIS) to indicate the severity of the spinal cord injury. AIS Grade A injuries consist of a loss of all spinal cord function (sensation and movement) below the level of injury is lost. This is known as a complete injury. All the other AIS grades are considered incomplete. Patients with Grade B injuries have some sensation below the level of injury, but there is no movement below the injury.. In patients with AIS Grade C injuries, there is both sensation and movement, but most of the muscles below the injury cannot function against resistance and that includes gravity. Those with AIS Grade D spinal cord injuries have some sensation and movement, but more than half of the muscles below the injury can function against resistance. Finally those with AIS Grade E injuries have both normal sensation and movement, but there may be other signs of injury, for example, pain.

For this trial, Stem Cell Inc enrolled 12 subjects who had suffered from a severe spinal cord injury at the thoracic or chest level (T2-T11); seven AIS A and 5 AIS B patients.. In order to qualify for this study, all patients had to be classified as either AIS A or B and a minimum of 3 months from injury.

The trial involved internationally prominent medical centers for spinal cord injury and rehabilitation, and associated principal investigators; Dr. Armin Curt at the University of Zurich and Balgrist University Hospital, Dr. Steve Casha at the University of Calgary, and Dr. Michael Fehlings at the University of Toronto.

All subjects in this trial received HuCNS-SC cells by means of direct transplantation into the spinal cord and they were also treated, temporarily, with immunosuppressive drugs to prevent the immune system from rejecting the implanted cells. Patients were regularly evaluated for safety of the treatment protocol, and to determine if patients showed any change in neurological function. To determine this, patients were given a standard battery of movement and sensory tests before the surgery and at routine intervals after the procedure. Thus all patients were simultaneously enrolled in a safety evaluation and separate evaluation that tested the efficacy of the procedure as well.

In the safety analyses of these subjects, all the data demonstrated that the surgical transplantation technique and cell dose were safe and well tolerated by all patients. HuCNS-SC cells were injected directly into the spinal cord both above and below the level of injury and none of the patients in sequential examinations over the course of twelve months showed any abnormal changes in spinal cord function associated with the transplantation technique. Additionally, there were no adverse events that could be attributed to the HuCNS-SC cells.

Analyses of the functional data after twelve-months revealed sustained improvements in sensory function that emerged consistently around three months after transplantation and persisted until the end of the study. These gains in sensory function involved multiple sensory pathways and were observed more frequently in the patients with less severe spinal cord injuries. Three of the seven AIS A patients and four of the five AIS B patients showed signs of positive sensory gains. Two patients in the study progressed from AIS A, to the lesser degree of injury grade, AIS B.

“It has been a privilege to be a part of the first study to test the potential of neural stem cell transplantation in thoracic spinal cord injury,” said Dr. Armin Curt, Professor and Chairman of the Spinal Cord Injury Center at Balgrist University Hospital, University of Zurich. “The gains we have detected indicate that areas of sensory function have returned in more than half the patients. Such gains are unlikely to have occurred spontaneously given the average time from injury. This patient population represents a form of spinal cord injury that has historically defied responses to experimental therapies, and the measurable gains we have found strongly argue for a biological result of the transplanted cells. These gains are exciting evidence that we are on the right track for developing this approach for spinal cord injury. This early outcome in thoracic injury firmly supports testing in cervical spinal cord injury.”

Stephen Huhn, M.D., FACS, FAAP, Vice President, Clinical Research and CMO at StemCells, Inc., said, “This research program has the potential to revolutionize the therapeutic paradigm for spinal cord injury patients. The clinical gains observed in this first study are a great beginning. We found evidence of sensory gains in multiple segments of the injured thoracic spinal cord across multiple patients. Our primary focus in this study for spinal cord injury was to evaluate safety and also to look for even small signs of an effect that went beyond the possibility of spontaneous recovery. We are obviously very pleased that the pattern of sensory gains observed in this study are both durable and meaningful, and indicate that the transplantation has impacted the function of damaged neural pathways in the cord. The Company’s development program has now advanced to a Phase II controlled study in cervical spinal cord injury where the corollary of sensory improvements in thoracic spinal cord injury could well be improved motor function in the upper extremities of patients with cervical spinal cord injuries.”

Pluristem’s Phase I/II Muscle Injury Trial Shows that Placental Stem Cells Augment Muscle Healing After Surgery


Pluristem Therapeutics Inc. a leading developer of placenta-based cell therapies, has announced top-line results from its Phase I/II clinical trial that accesses the safety and efficacy of PLacental eXpanded (PLX-PAD) cells in the treatment of muscle injury. This clinical trial showed that PLX-PAD cells were safe and effective. These results provide evidence that PLX cells may be efficacious in the treatment of orthopedic injuries including muscles and tendons.

This Phase I/II trial was a randomized, placebo-controlled, double-blinded study conducted at the Orthopedic Clinic of the Charité University Medical School under the auspices of the Paul-Ehrlich-Institute (PEI), Germany’s health authority. The injured muscle studied was the gluteus medius muscle in the buttock. Hip-replacement patients undergo a surgical procedure that injuries the gluteus medius muscle healing of this muscle after hip replacement surgery is crucial for joint stability and function.

Gluteal Muscles

The 20 patients in the study were randomized into three treatment groups. Each patient received an injection in the gluteal muscle that had been traumatized during surgery. One group was treated with 150 million PLX-PAD cells per dose (n=7), the second was administered 300 million PLX-PAD cells per dose (n=6), and the third received placebo (n=7).

The primary safety endpoint was clearly met since no serious adverse events were reported at either dose level. The study showed that PLX-PAD cells were safe and well tolerated.

The primary efficacy endpoint of the study (how well the stem cells worked) was the change in maximal voluntary isometric contraction force of the gluteal muscle at six months after surgery. Efficacy was shown in both PLX-PAD-treated patient groups. The group that received a dose of 150 million cells showed a statistically significant 500% improvement over the placebo group in the change of the maximal contraction force of the gluteal muscle (p=0.0067). Patients who received the lower dose (300 million cells) showed a 300% improvement over the placebo (p=0.18).

An analysis of the overall structure of the gluteal muscle using magnetic resonance imaging (MRI) indicated an increase in muscle volume in those patients treated with PLX-PAD cells versus the placebo group. The patients who had received the 150 million cell dose displayed a statistically significant superiority over the placebo group. Patients treated at the 150 million cell dose showed an approximate 300% improvement over the placebo in the analysis of muscle volume (p=0.004). Patients treated at the 300 million cell dose showed an approximate 150% improvement over the placebo in the change of muscle volume (p=0.19).

The study’s Senior Scientist, Dr. Tobias Winkler of the Center for Musculoskeletal Surgery, Julius Wolff Institute Berlin, Charité – Universitaetsmedizin Berlin, Germany, commented, “I am very impressed with the magnitude of the efficacy results seen in this trial. PLX cells demonstrated safety and suggested that the increase in muscle volume could be a mechanism for the improvement of contraction force.”

Zami Aberman Chairman and CEO stated, “This was a very important study not only for Pluristem but for the cell therapy industry in general. The study confirms our pre-clinical findings that PLX-PAD cell therapy can be effective in treating muscle injury. Having a statistically significant result for our primary efficacy endpoint is very encouraging and consistent with our understanding of the mechanism of action associated with cell therapy. Based on these results, we intend to move forward with implementing our strategy towards using PLX cells in orthopedic indications and muscle trauma.”