Stem Cell Treatments for Aortic Aneurysms


The aorta is the largest blood vessel in our bodies and it emerges from the left ventricle of the heart, takes a U-turn, and swings down toward the legs (descending or dorsal aorta). There are several branches of the aorta as it sharply turns that extend towards the head and upper extremities.

Aorta structure

Sometimes, as a result of inflammation of the aorta or other types of problems, the elastic matrix that surrounds and reinforces the aorta breaks down.  This weakens the wall of the aorta and it bulges out.  This bulge is called an aortic aneurysm and it is a dangerous condition because the aneurysm can burst, which will cause the patient to bleed to death.

Aortic Aneurysm

If an aneurysm is discovered through medical imaging techniques, drugs are given to lower blood pressure and take some of the pressure off the aorta.  Also, drugs that prevent further degradation of the elastic matrix are also used.  Ultimately, for large or fast-growing aneurysms, surgical repair of the aorta is necessary.  For aneurysms of the abdominal aorta, a surgical procedure called abdominal aortic aneurysm open repair is the “industry standard.”  For this surgery, the abdomen is cut open, and the aneurysm is repaired by the use of a long cylinder-like tube called a graft.  Such grafts are made of different materials that include Dacron (textile polyester synthetic graft) or polytetrafluoroethylene (PTFE, a nontextile synthetic graft).  The surgeon sutures the graft to the aorta, and connects one end of the aorta at the site of the aneurysm to the other end.

A “kinder, gentler” way to fix an aneurysm is to use a procedure called endovascular aneurysm repair (EVAR).  EVAR uses these devices called “stents” to support the wall of the aorta.  A small insertion is made in the groin and the collapsed stent is inserted through the large artery in the leg.  Then the stent, which is long cylinder-like tube made of a thin metal framework and covered with various materials such as Dacron or polytetrafluoroethylene (PTFE), is inserted into the aneurysm.  Once in place, the stent-graft will be expanded in a spring-like fashion to attach to the wall of the aorta and support it.  The aneurysm will eventually shrink down onto the stent-graft.

In some cases, the patient is too weak for surgery, and is not a candidate for EVAR.  A much better option would be to non-surgically repair the elastic support framework that surrounds the aorta, and stem cells are candidates for such repair.

To repair the elastic mesh work that surrounds the wall of the aorta, smooth muscle cells that secrete the protein “elastin” must be introduced into the wall of the aorta.  Also, using the patient’s own stem cells offers a better strategy at this point, since this circumvents such issues as immune rejection of implanted tissues and so on.  The sources of stem cells for smooth muscle cells include bone marrow stem cells, fat-based stem cells, and stem cells from peripheral blood.  All three of these stem cell sources have problems with finding enough cells in the body and expanding them to high enough numbers in order to properly treat the aneurysm.

Fortunately, the use of induced pluripotent stem cells, which are made from a patient’s mature cells and have many, though not all of the characteristics of embryonic stem cells, can provide large quantities of elastin-secreting smooth muscle cells.  Also, one laboratory in particular has reported differentiating human induced pluripotent stem cells into smooth muscle cells (Lee TH, Song SH, Kim KL, et al. Circ Res 106:120–128).  While there are challenges to making functional elastin, there are possibilities that many of these can be overcome.

Ideal characteristics and expected roles of iPSCs and differentiated SMC-like derivatives for treating AAAs. Shown are several of the necessary properties for expansion/differentiation in culture, delivery to the AAA, and elastogenesis within the tunica media microenvironment. Abbreviations: AAA, abdominal aortic aneurysm; ECM, extracellular matrix; Eln, elastin; iPSC, induced pluripotent stem cell; LOX, lysyl oxidase; MMPs, matrix metalloproteinases; SMC, smooth muscle cell; TNFα, tumor necrosis factor-α.
Ideal characteristics and expected roles of iPSCs and differentiated SMC-like derivatives for treating AAAs. Shown are several of the necessary properties for expansion/differentiation in culture, delivery to the AAA, and elastogenesis within the tunica media microenvironment. Abbreviations: AAA, abdominal aortic aneurysm; ECM, extracellular matrix; Eln, elastin; iPSC, induced pluripotent stem cell; LOX, lysyl oxidase; MMPs, matrix metalloproteinases; SMC, smooth muscle cell; TNFα, tumor necrosis factor-α.

In addition to induced pluripotent stem cells, other laboratories have examined umbilical cord mesenchymal stem cells and their ability to decrease the inflammation within the aorta that leads to aneurysms.  The researchers discovered that all the indicators of inflammation decreased, but the synthesis of new elastin was not examined.  However, a Japanese laboratory used mouse mesenchymal stem cells from bone marrow and found that not only did these cells shut down enzymes that tend to degrade elastin, but also initiated new elastin synthesis in culture.  The same study also showed that MSCs implanted into the vessel walls of an aorta that was experiencing an aneurysm stabilized the aneurysm by inhibiting the elastin-degrading enzymes, and increasing the elastin content of the vessel wall.  This had the net effect of stabilizing the aneurysms and preventing them from growing further (see Hashizume R, Yamawaki-Ogata A, Ueda Y, et al. J Vasc Surg 54:1743–1752).  

These experiments show that stem cell treatments for abdominal aneurysms are feasible and would definitely be a much-needed nonsurgical treatment option for the high-risk elderly demographic, which is rapidly growing in the developed world.

For more information on this interesting topic, see Chris A. BashuraRaj R. Raob and Anand Ramamurthia. Perspectives on Stem Cell-Based Elastic Matrix Regenerative Therapies for Abdominal Aortic Aneurysms.  Stem Cells Trans Med June 2013 vol. 2 no. 6 401-408.

Kidney Tubular Cells Formed from Stem Cells


A collaborative effort between several research teams has successfully directed stem cells to differentiate into kidney tubular cells. This is a significant advance that could hasten the day when stem cell-based treatments are used to treat kidney failure.

Chronic kidney disease is a major global public health problem. Unfortunately, once patients progress to kidney failure, their treatment options are limited to dialysis and kidney transplantation. Regenerative medicine, whose goal is to rebuild or repair tissues and organs, might offer a promising alternative.

A team of researchers from the Harvard Stem Cell Institute (Cambridge, Mass.), Brigham and Women’s Hospital (Boston) and Keio University School of Medicine (Tokyo) that included Albert Lam, M.D., Benjamin Freedman, Ph.D. and Ryuji Morizane, M.D., Ph.D., has been diligently developing strategies for the past five years to develop strategies to direct human pluripotent stem cells (human embryonic stem cells or hESCs and human induced pluripotent stem cells or iPSCs) to differentiate into kidney cells for the purposes of kidney regeneration.

“Our goal was to develop a simple, efficient and reproducible method of differentiating human pluripotent stem cells into cells of the intermediate mesoderm, the earliest tissue in the developing embryo that is fated to give rise to the kidneys,” said Dr. Lam. Lam also noted that these intermediate mesoderm cells would be the “starting blocks” for deriving more specific kidney cells.

Lam and his collaborators discovered a blend of chemicals which, when added to stem cells in a precise sequence, caused the stem cells to turn off their stem cell-specific genes and activate those genes found in kidney cells. Furthermore, the activation of the kidney-specific genes occurred in the same order that they turn on during embryonic kidney development.

At E10.5, the metanephric mesenchyme (red) comprises a unique subpopulation of the nephrogenic cord (yellow). Expression of the Glial-derived neurotrophic factor (Gdnf) is resticted to the metanephric mesenchyme by the actions of transcriptional activators, secreted factors, and inhibitors. GDNF binds the Ret receptor and promotes the formation of the ureteric bud, an outgrowth from the nephric duct (blue). Ret initially depends upon the Gata3 transcription factor for its expression in the nephric duct. Spry1 acts as an intracellular inhibitor of the Ret signal transduction pathway. BMP4 inhibits GDNF signaling and is in turn inhibited by the Grem1 binding protein. At 11.5, the ureteric bud has branched, forming a T-shaped structure. Each ureteric bud tip is surrounded by a cap of condensed metanephric mesenchyme. Reciprocal signaling between the cap mesenchyme and ureteric bud, as well as signals coming from stromal cells (red), maintain expression of Ret in the bud tips and Gdnf in the cap mesenchyme. Nephrons are derived from cap mesenchyme cells that form pretubular aggregates and then renal vesicles on either side of each ureteric bud tip. Wnt9b and Wnt4 induce nephron formation and are necessary for maintaining ureteric bud branching. The Six2 transcription factor prevents ectopic nephron formation. BMP7 promotes survival of the cap mesenchyme. Not all genes implicated in metanephros formation are shown for clarity (see text for further details). Green arrows indicate the ligand-receptor interaction between GDNF and Ret. Black arrows indicate the epistasis between genes but in most cases it is not known if the interactions are direct. T-shaped symbols indicate inhibitory interactions.
At E10.5, the metanephric mesenchyme (red) comprises a unique subpopulation of the nephrogenic cord (yellow). Expression of the Glial-derived neurotrophic factor (Gdnf) is resticted to the metanephric mesenchyme by the actions of transcriptional activators, secreted factors, and inhibitors. GDNF binds the Ret receptor and promotes the formation of the ureteric bud, an outgrowth from the nephric duct (blue). Ret initially depends upon the Gata3 transcription factor for its expression in the nephric duct. Spry1 acts as an intracellular inhibitor of the Ret signal transduction pathway. BMP4 inhibits GDNF signaling and is in turn inhibited by the Grem1 binding protein. At 11.5, the ureteric bud has branched, forming a T-shaped structure. Each ureteric bud tip is surrounded by a cap of condensed metanephric mesenchyme. Reciprocal signaling between the cap mesenchyme and ureteric bud, as well as signals coming from stromal cells (red), maintain expression of Ret in the bud tips and Gdnf in the cap mesenchyme. Nephrons are derived from cap mesenchyme cells that form pretubular aggregates and then renal vesicles on either side of each ureteric bud tip. Wnt9b and Wnt4 induce nephron formation and are necessary for maintaining ureteric bud branching. The Six2 transcription factor prevents ectopic nephron formation. BMP7 promotes survival of the cap mesenchyme. Not all genes implicated in metanephros formation are shown for clarity (see text for further details). Green arrows indicate the ligand-receptor interaction between GDNF and Ret. Black arrows indicate the epistasis between genes but in most cases it is not known if the interactions are direct. T-shaped symbols indicate inhibitory interactions.

The investigators were able to differentiate both hESCs and human iPSCs into cells that expressed the PAX2 and LHX1 genes, which are two key elements of the intermediate mesoderm; the developmental tissue from which the kidney develops. The iPSCs were derived by reprogramming fibroblasts obtained from adult skin biopsies into pluripotent cells. The differentiated cells expressed multiple genes found in intermediate mesoderm and spontaneously produced tubular structures that expressed those genes found in mature kidney tubules.

The researchers could then differentiate the intermediate mesoderm cells into kidney precursor cells that expressed the SIX2, SALL1 and WT1 genes. These three genes designate an embryonic tissue called the “metanephric cap mesenchyme.” Metanephric cap mesenchyme is a critical tissue for kidney differentiation. During kidney development, the metanephric cap mesenchyme contains a population of progenitor cells that give rise to nearly all of the epithelial cells of the kidney (epithelial cells or cells in a sheet, generate the lion’s share of the tubules of the kidney).

Metanephric cap mesenchyme is is red
Metanephric cap mesenchyme is is red

The cells also continued to behave like kidney cells when transplanted into adult or embryonic mouse kidneys. This gives further hope that these investigators might one day be able to create kidney tissues that could function in a patient and would be fully compatible with the patient’s immune system.

The findings are published online in Journal of the American Society of Nephrology.

Using Stem Cells for Muscle Repair


Stem cell treatments for muscular dystrophy and other degenerative diseases of muscle might be a realistic possibility, since scientists have discovered protocols to make muscle cells from human pluripotent stem cells.

Tiziano Barberi, Ph.D., chief investigator in the Australian Regenerative Medicine Institute (ARMI) at Monash University in Clayton, Victoria, and Bianca Borchin, a graduate student in the Barberi laboratory, have developed techniques to generate skeletal muscle cells. Barberi and Borchin isolated muscle precursor cells from human pluripotent stem cells (hPSCs), after which they applied a purification technique that allows these cells to differentiate further into muscle cells.

Pluripotent stem cells, such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), have the ability to become any cell in the human body, including skeletal muscles, which control movement. Once the stem cells begin to differentiate, controlling that process is very challenging, but essential in order to produce only the desired cells. Barberi and Borchin used a technique known as fluorescence activated cell sorting (FACS) to identify those cells that contained the precise combination of protein markers that are expressed in muscle precursor cells. FACS also enabled them to successfully isolate those muscle precursor cells.

“There is an urgent need to find a source of muscle cells that could be used to replace the defective muscle fibers in degenerative disease. Pluripotent stem cells could be the source of these muscle cells,” Dr. Barberi said. “Beyond obtaining muscle from hPSCs, we also found a way to isolate the muscle precursor cells we generated, which is a prerequisite for their use in regenerative medicine.”

Borchin said there were existing clinical trials based on the use of specialized cells derived from hPSCs in the treatment of some degenerative diseases, but deriving muscle cells from pluripotent stem cells proved to be challenging. “These results are extremely promising because they mark a significant step towards the use of hPSCs for muscle repair,” she said.

“The production of a large number of pure muscle precursor cells does not only have potential therapeutic applications, but also provides a platform for large-scale screening of new drugs against muscle disease,” Dr. Barberi added.

This study was published early online Nov. 27 in Stem Cell Reports.  This study does not address the immune response against dystrophin that has plagued gene therapy and stem cell-based muscular dystrophy clinical trials that has been noted in previous posts.  The use of embryonic stem cells, in particular, would create muscles that are not tissue matched to the patient and would generate robust inflammation against the implanted muscles.   Thus embryonic stem cells would generate a “cure” that would be much worse than the disease itself.  Nevertheless, adapting the Barberi-Borchin protocol to induced pluripotent stem cells would produce skeletal muscle cells that are tissue matched to the patient.

Human Stem Cells Converted into Functional Lung Cells


Scientists from the Columbia University Medical Center have succeeded in transforming human stem cells into functional lung and airway cells. This finding has significant potential for modeling lung disease, screening lung-specific drugs, and, hopefully, generating lung tissue for transplantation.

Study leader, Hans-Willem Snoeck, professor of medicine and affiliated with the Columbia Center for Translational Immunology and the Columbia Stem Cell Initiative, said, “Researchers have had relative success in turning human stem cells into heart cells, pancreatic beta cells, intestinal cells, liver cells, and nerve cells, raising all sorts of possibilities for regenerative medicine. Now, we are finally able to make lung and airway cells. This is important because lung transplants have a particularly poor prognosis. Although any clinical application is still many years away, we can begin thinking about making autologous lung transplants – that is, transplants that use a patient’s own skin cells to generate functional lung tissue.”

The research builds on Snoeck’s earlier discoveries in 2011 that a set of chemical factors could induce the differentiation of embryonic or induced pluripotent stem cells into “anterior foregut endoderm,” which is the embryo in the tissue from which the lungs form (Green MD, et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol. 2011 Mar;29(3):267-72).

Human Embryological Development - one month

In his new study, Snoeck and his colleagues found new factors that can transform anterior foregut endoderm cells into lung and airway cells. In particular, Snoeck and his co-workers were able to establish the presence of “type 2 alveolar epithelial cells,” which secrete the lung surfactant that maintains the lung alveoli (those tiny sacs in the lung where all the oxygen exchange takes place).

lung alveolus

With these techniques, lung researchers hope to study diseases like idiopathic pulmonary fibrosis (IPF), in which type 2 epithelial cells seem to divide and produce scarring in the lungs.

“No one knows what causes the disease, and there’s no way to treat it,” said Snoeck. “Using this technology, researchers will finally be able to create laboratory models of IPF, study the disease at the molecular level, and screen drugs for possible treatments or cures. In the longer term, we hope to use this technology to make an autologous lung graft. This would entail taking a lung from a donor, removing all the lung cells, leaving only the lung scaffold; and seeding the scaffold with new lung cells derived from the patient. In this way, rejection problems could be avoided.”

Snoeck is investigating this approach in collaboration with researchers in the Columbia University Department of Biomedical Engineering.

A More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies


An improved method to produce heart muscle from embryonic stem cells or induced pluripotent stem cells could potentially fulfill the demand for heart disease treatments and models of testing new heart drugs. The challenging part of making heart muscle in the laboratory is the production of cells that are all the same. Otherwise their response to drugs or their transplantation into a damaged heart will be unpredictable and unreliable. Fortunately a new study published in the journal STEM CELLS Translational Medicine may provide a way to make large, homogeneous batches of heart muscle cells.

By mixing some small molecules and growth factors together, an international research team led by investigators at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai developed a two-step system that induced embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to efficiently differentiate into ventricular heart muscle cells. This protocol was not only highly efficient but also very reproducible. It also seemed to nicely recapitulate the developmental steps of normal heart development.

“These chemically induced, ventricular-like cardiomyocytes (termed ciVCMs) exhibited the expected cardiac electrophysiological and calcium handling properties as well as the appropriate heart rate responses,” said lead investigator Ioannis Karakikes, Ph.D., of the Stanford University School Of Medicine, Cardiovascular Institute. Other members of this research team consisted of scientists from the Icahn School of Medicine at Mount Sinai, New York, and the Stem Cell & Regenerative Medicine Consortium at the University of Hong Kong.

One of the unusual aspects of this research project was the integrated approach it took. This research group combined computational and experimental systems and by using these techniques, they showed that the use of particular small molecules modulated the Wnt pathway. Signals from the Wnt pathway pass from cell to cell and play a key role in determining whether cells differentiate into an atrial or ventricular muscle cell.

“The further clarification of the molecular mechanism(s) that underlie this kind of subtype specification is essential to improving our understanding of cardiovascular development. We may be able to regulate the commitment, proliferation and differentiation of pluripotent stem cells into heart muscle cells and then harness them for therapeutic purposes,” Dr. Karakikes said.

“Most cases of heart failure are related to a deficiency of heart muscle cells in the lower chambers of the heart,” said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “An efficient, cost-effective and reproducible system for generating ventricular cardiomyocytes would be a valuable resource for cell therapies as well as drug screening.”

Accelerating Stem Cells Aging To Study Age-Related Diseases Like Parkinson’s


Using stem cells to model neurodegenerative diseases shows terrific promise, but because the stem cells tend to produce young cells, they often fail to accurately model disorders that show late-onset. To solve this problem, a research group has published a paper in the December 5th edition of the journal Cell Stem Cell that describes an ingenious new method that converts induced pluripotent stem cells (iPSCs) into nerve cells that recapitulate features associated with aging as well as Parkinson’s disease. This simple approach, which involves exposing iPSC-derived cells to a protein associated with premature aging called “progerin,” could provide a way for scientists to use stem cells to model a range of late-onset disorders. This technique could potentially open new avenues for preventing and treating these devastating diseases.

“With current techniques, we would typically have to grow pluripotent stem cell-derived cells for 60 or more years in order to model a late-onset disease,” says senior study author Lorenz Studer of the Sloan-Kettering Institute for Cancer Research. “Now, with progerin-induced aging, we can accelerate this process down to a period of a few days or weeks. This should greatly simplify the study of many late-onset diseases that are of such great burden to our aging society.”

Induced pluripotent stem cells allow scientists to model a specific patient’s disease in a culture dish. By extracting a small sample of skin cells and genetically engineering them with pluripotency factors, the cells are reprogrammed into embryonic-like stem cells that have the ability to differentiate into other disease-relevant cell types like neurons or blood cells. However, iPSC-derived cells are immature and they can take months to become functional. Consequently, their slow maturation process causes iPSC-derived cells to be too young to effectively model diseases that emerge later in life.

To overcome this hurdle, Studer’s team exposed iPSC-derived skin cells and neurons that originated from both young and old donors, to a protein called “progerin.” Progerin is a mutant form of the nuclear lamin proteins that provide structure to the nuclear membrane. Mutations in these proteins cause premature aging and an early death from old age. Short-term exposure of these iPSC-derived cells to progerin caused them to manifest age-associated markers that are normally present in older cells.

Then Studer and others used iPSC technology to reprogram skin cells taken from patients with Parkinson’s disease and differentiated them into dopaminergic neurons; the type of neuron that is defective in these patients. After exposure to progerin, these cultured neurons recapitulated disease-related features, including neuronal degeneration and cell death as well as mitochondrial defects.

“We could observe novel disease-related phenotypes that could not be modeled in previous efforts of studying Parkinson’s disease in a dish,” says first author Justine Miller of the Sloan-Kettering Institute for Cancer Research. “We hope that the strategy will enable mechanistic studies that could explain why a disease is late-onset. We also think that it could enable a more relevant screening platform to develop new drugs that treat late-onset diseases and prevent degeneration.”

Understanding the Role of a Protein in Familial Alzheimer’s Disease


Lawrence Goldstein, director of the UC San Diego Stem Cell Program and a member of the Departments of Cellular and Molecular Medicine and Neurosciences, has an abiding interest in Alzheimer’s disease (AD).  To that end, he and his colleagues have used genetically engineered human induced pluripotent stem cells to determine the role a particular protein plays in the causation of familial AD.  Apparently, a simple loss-of-function model does not contribute to the inherited form of this disorder.  Goldstein hopes that his findings might be able to better explain the mechanisms behind AD and help drug makers design better drugs to treat this disease.

Familial AD is a subset of the larger group of conditions known as early-onset AD.  The vast majority of cases of AD are “sporadic” and do not have a precise known cause, even though age is a primary risk factor (an estimated 5.2 million Americans have AD).  Familial AD is causes by mutations in particular genes.  One of these genes, PS1, encodes a protein called “presenilin 1,” which acts as a protease (an enzyme that clips other proteins in half).  Presenilin 1 is the catalytic component of a protein complex called “gamma-secretase.”  Presenilin 1 forms a complex with three other proteins (Nicastrin, Aph1, Pen2) to form gamma-secretase, and this enzyme attacks specific proteins that are embedded in the cell membrane and clips them into smaller pieces.

gamma-secretase

By clipping these cell membrane proteins into smaller pieces, gamma-secretase helps the cell transport cellular material from one side of the cell membrane to the other side or form the outside of the cell to the inside.

One of the substrates of gamma-secretase is a protein called amyloid precursor protein (APP).  While the function of APP remains unknown, APP cleavage by the gamma-secretase produces small protein fragments known as amyloid beta.

A consensus among AD researchers is that the accumulation of specific forms of amyloid beta causes the formation of the amyloid plaques that kills off neurons and leads to the onset of AD.  The most abundant product of gamma-secretase cleavage of APP is a protein called “Aβ40.”  This protein is forty amino acids long and does not cause any brain damage.  However, a minority product of APP cleave by the gamma-secretase is “Aβ42,” which is 42 amino acids long and forms the amyloid plaques and neurofibillar tangles that are so characteristic of AD (see Scheuner, D., et al., Nat. Med. 2, 864–870).

According to Goldstein, most of the time, gamma-secretase clips APP without causing any problems, but some 20% of the time, the protein clips APP incorrectly and this results in the plaque-forming forms of amyloid beta.  Goldstein explained: “Our research demonstrates very precisely that mutations in PS1 double the frequency of bad cuts.”

To demonstrate this, Goldstein and his co-workers purchased human induced pluripotent stem cells and differentiated them into neurons.  These neurons contained different alleles (forms) of the PS1 gene, and some of these mutant forms of PS1 contained the types of mutations that cause familial AD.  Once PS1 allele in particular called PS1 ΔE9 increased the ratio of Aβ42 to Aβ40 dose-dependent manner.  Since the PS1 ΔE9 causes familial AD, this research elucidates precisely why it does so.

“We were able to investigate exactly how specific mutations and their frequency change the behavior of neurons.  We took finely engineered cells that we knew and understood and then looked how a single mutation causes changed in the molecular scissors and what happened next.”

Presenilin allele consequences

Goldstein further notes, “In some ways, this is a powerful technical demonstration of the promise of stem cells and genomics research in better understanding and ultimately treating AD.  We were able to identify and assign precise limits on how a mutations works in familial AD.  That’s an important step in advancing the science, in finding drugs and treatments that can slow, maybe reverse, the disease’s devastating effects.”