Enzyme Helps Stem Cells Improve Recovery From Limb Injury


Ischemia refers to the absence of oxygen in a tissue or organ. Ischemia can cause cells to die and organs to fail and protecting cells, tissues and organs from ischemia-based damaged is an important research topic.

Perfusion refers to the restoration of the blood flow to an organ or tissue that had experienced a cessation of blood flow for a period of time. Even though the restoration of circulation is far preferable to ischemia, perfusion has its own share of side effects. For example, perfusion heightens cells death and inflammation and this can greatly exacerbate the physical condition of the patient after a heart attack, traumatic limb injury, or organ donation.

“Think about trying to hold onto a nuclear power plant after you unplug the electricity and cannot pump water to cool it down,” said Jack Yu, Chief of Medical College of Georgia’s Section of Plastic and Reconstructive Surgery. “All kinds of bad things start happening,”

Earlier studies in the laboratory of Babak Baban have shown that stem cells can improve new blood vessel growth and turn down the severe inflammation after perfusion (see Baban, et al., Am J Physiol Regul Integr Comp Physiol. 2012 Dec;303(11):R1136-46 and Mozaffari MS, Am J Cardiovasc Dis. 2013 Nov 1;3(4):180-96). Baban is an immunologist in the Medical College of Georgia and College of Dental Medicine at Georgia Regents University.

The new study from the Baban laboratory shows that an enzyme called indolamine 2,3,-dioxygenase or IDO can regulate inflammation during perfusion. IDO is widely known to generate immune tolerance and dampen the immune response in the developing embryo and fetus, but it turns out that stem cells also make this enzyme.

In their study, Including IDO with bone marrow-derived stem cells increased the healing efficiency of injected stem cells.

 Treatment Effect on Toe Spread Ratio Averages (48–72 hours after treatment). The outcome of stem cell (SC) therapy indicates that IDO may improve recovery. IDO-KO mice treated with SC demonstrated an accelerated recovery compared with IDO-KO treated with PBS (p-value <0.05). However, the WT mice treated with SC showed the greatest recovery of intrinsic paw function when expressed as a ratio comparing it to the non-injured paw (p-value = 0.027). Functional recovery from ischemia-reperfusion (IR) injury in the different treatment groups was measured, using a modified version of walking track analysis. For each subject, toe spread was measured in the IR limb (Ti) and control contralateral limb (Tc). The ratio of the toe spread in the injured limb (Ti) to the control limb (Tc) was then calculated by Ti/Tc. A ratio of 1 indicates 100% recovery or equal width and thus normal intrinsic function. When comparing the WT group treated with stem cells to those treated with PBS, a 45% increase in recovery was seen demonstrating the efficacy of stem cell therapy alone in the presence of an environment where IDO expression is present. doi:10.1371/journal.pone.0095720.g001
Treatment Effect on Toe Spread Ratio Averages (48–72 hours after treatment).
The outcome of stem cell (SC) therapy indicates that IDO may improve recovery. IDO-KO mice treated with SC demonstrated an accelerated recovery compared with IDO-KO treated with PBS (p-value <0.05). However, the WT mice treated with SC showed the greatest recovery of intrinsic paw function when expressed as a ratio comparing it to the non-injured paw (p-value = 0.027). Functional recovery from ischemia-reperfusion (IR) injury in the different treatment groups was measured, using a modified version of walking track analysis. For each subject, toe spread was measured in the IR limb (Ti) and control contralateral limb (Tc). The ratio of the toe spread in the injured limb (Ti) to the control limb (Tc) was then calculated by Ti/Tc. A ratio of 1 indicates 100% recovery or equal width and thus normal intrinsic function. When comparing the WT group treated with stem cells to those treated with PBS, a 45% increase in recovery was seen demonstrating the efficacy of stem cell therapy alone in the presence of an environment where IDO expression is present.
doi:10.1371/journal.pone.0095720.g001

Also indicators of inflammation, swelling, and cell death decreased in animals that received bone marrow-derived stem cell injections and had IDO.  Baban’s group also showed that the injected stem cells increased endogenous expression of IDO in the perfused tissues.

BMDScs can enhance IDO and regulatory T cells while reducing inflammatory cytokines in the hind limb IR injury. Immunohistochemical analysis of paraffin embedded tissues from murine model with IRI of hind limb showed that treating the animals with BMDSCs in an IDO sufficient microenvironment first: increased IDO and FOXP3 expression (panels A and B, red arrows), while decreased the inflammatory cytokines, IL-17 and IL-23 (panels C and D). Anti inflammatory cytokine, IL-10, was increased as demonstrated in panel E. All together, these analysis suggest a potential therapeutic role for BMDSCs, re-enforced by possible IDO dependent mechanisms. All pictures are 400X magnification
BMDScs can enhance IDO and regulatory T cells while reducing inflammatory cytokines in the hind limb IR injury.
Immunohistochemical analysis of paraffin embedded tissues from murine model with IRI of hind limb showed that treating the animals with BMDSCs in an IDO sufficient microenvironment first: increased IDO and FOXP3 expression (panels A and B, red arrows), while decreased the inflammatory cytokines, IL-17 and IL-23 (panels C and D). Anti inflammatory cytokine, IL-10, was increased as demonstrated in panel E. All together, these analysis suggest a potential therapeutic role for BMDSCs, re-enforced by possible IDO dependent mechanisms. All pictures are 400X magnification

Baban thinks that even though these experiments were performed in mice, because mice tend to be a rather good model system for limb perfusion/ischemia, these results might be applicable in the clinic.  “We don’t want to turn off the immune system, we want to turn it back to normal,” said Baban

According to Baban’s collaborator, Jack Yu, even a short period of inadequate blood supply and nutrients results in the rapid accumulation of destructive acidic metabolites, reactive oxygen species (also known as free radicals), and cellular damage.  The power plant of the cell, small structures called the mitochondria, tend to be one of the earliest casualties of ischemia/perfusion.  Since mitochondria require oxygen to make a chemical called ATP, which is the energy currency in cells, a lack of oxygen makes the mitochondria leaky, swollen and dysfunctional.

“The mitochondria are very sick,” said Yu. ” When blood flow is restored, it can put huge additional stress on sick powerhouses.  “They start to leak things that should not be outside the mitochondria.”

Without adequate energy production and a cellular power plant that leaks, the cells fill with toxic byproducts that cause the cells to commit a kind of cellular hari-kari.  Inflammation is a response to dying cells, since the role of inflammation is to remove dead or dying cells, but inflammation can give the coup de grace to cells that are already on the edge.  Therefore, inflammation can worsen the problem of cell death.

Even though these results were applied to limb ischemia perfusion, Baban and his colleagues think that their results are applicable to other types of ischemia perfusion events, such as heart attacks and deep burns.  Yu, for example, has noticed that in the case of burn patients, the transplantation of new tissue into areas that have undergone ischemia perfusion can die off even while the patient is still in the operating room.

“It cuts across many individual disease conditions,”  said Yu.  Transplant centers already are experimenting with pulsing donor organs to prevent reperfusion trauma.

The next experiments will include determining if more is better.  That is, if giving more stem cells will improve the condition of the injured animal.  In these experiments, which were published in the journal PLoS One, only one stem cell dose was given.  Also, IDO-enhancing drugs will be examined for their ability to prevent reperfusion damage.

Even though stem cells are not given to patients in hospitals after reperfusion, stem cell-based treatments are being tested for their ability to augment healing after reperfusion.  Presently, physicians reestablish blood flow and then give broad-spectrum antibiotics.  The results are inconsistent.  Hopefully, this work by Baban and others will pave the road for future work that leads to human clinical trials.

Regenerating Injured Kidneys with Exosomes from Human Umbilical Cord Mesenchymal Stem Cells


Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 2013, 4:34.

Ying Zhou and colleagues from Jiangsi University have provided helpful insights into how adult stem cell populations – in particular, mesenchymal stem cells (MSCs) isolated from human umbilical cord (hucMSCs) – are able to regulate tissue repair and regeneration. Adult stem cells, including MSCs from different sources, confer regenerative effects in animal models of disease and tissue injury. Many of these cells are also in phase I and II trials for limb ischemia, congestive heart failure, and acute myocardial infarction (Syed BA, Evans JB. Nat Rev Drug Discov 2013, 12:185–186).

Despite the documented healing capabilities of MSCs, in many cases, even though the implanted stem cells produce genuine, reproducible therapeutic effects, the presence of the transplanted stem cells in the regenerating tissue is not observed. These observations suggest that the predominant therapeutic effect of stem cells is conferred through the release of therapeutic factors. In fact, conditioned media from adult stem cell populations are able to improve ischemic damage to kidney and heart, which confirms the presence of factors released by stem cells in mediating tissue regeneration after injury (van Koppen A, et al., PLoS One 2012, 7:e38746; Timmers L, et al., Stem Cell Res 2007, 1:129–137). Additionally, the secretion of factors such as interleukin-10 (IL-10), indoleamine 2,3-dioxygenase (IDO), interleukin-1 receptor antagonist (IL-1Ra), transforming growth factor-beta 1 (TGF-β1), prostaglandin E2 (PGE2), and tumor necrosis factor-alpha-stimulated gene/protein 6 (TSG-6) has been implicated in conferring the anti-inflammatory effects of stem cells (Pittenger M: Cell Stem Cell 2009, 5:8–10). These observations cohere with the positive clinical effects of MSCs in treating Crohn’s disease and graft-versus-host disease (Caplan AI, Correa D. Cell Stem Cell 2011, 9:11–15).

Another stem cell population called muscle-derived stem/progenitor cells, which are related to MSCs, can also extend the life span of mice that have the equivalent of an aging disease called progeria. These muscle-derived stem/progenitor cells work through a paracrine mechanism (i.e. the release of locally acting substances from cells; see Lavasani M, et al., Nat Commun 2012, 3:608). However, it is unclear what factors released by functional stem cells are important for facilitating tissue regeneration after injury, disease, or aging and the precise mechanism through which these factors exert their effects. Recently, several groups have demonstrated the potent therapeutic activity of small vesicles called exosomes that are released by stem cells (Gatti S, et al., Nephrol Dial Transplant 2011, 26:1474–1483; Bruno S, et al., PLoS One 2012, 7:e33115; Lai RC, et al., Regen Med 2013, 8:197–209; Lee C, et al., Circulation 2012, 126:2601–2611; Li T, et al., Stem Cells Dev 2013, 22:845–854). Exosomes are a type of membrane vesicle with a diameter of 30 to 100 nm released by most cell types, including stem cells. They are formed by the inverse budding of the multivesicular bodies and are released from cells upon fusion of multivesicular bodies with the cell membrane (Stoorvogel W, et al., Traffic 2002, 3:321–330).

Exosomes are distinct from larger vesicles, termed ectosomes, which are released by shedding from the cell membrane. The protein content of exosomes depends on the cells that release them, but they tend to be enriched in certain molecules, including adhesion molecules, membrane trafficking molecules, cytoskeleton molecules, heat-shock proteins, cytoplasmic enzymes, and signal transduction proteins. Importantly, exosomes also contain functional mRNA and microRNA molecules. The role of exosomes in vivo is hypothesized to be for cell-to-cell communication, transferring proteins and RNAs between cells both locally and at a distance.

To examine the regenerative effects of MSCs derived from human umbilical cord, Zhou and colleagues used a rat model of acute kidney toxicity induced by treatment with the anti-cancer drug cisplatin. After treatment with cisplatin, rats show increases in blood urea nitrogen and creatinine levels (a sign of kidney dysfunction) and increases in apoptosis, necrosis, and oxidative stress in the kidney. If exosomes purified from hucMSCs, termed hucMSC-ex are injected underneath the renal capsule into the kidney, these indices of acute kidney injury decrease. In cell culture, huc-MSC-exs promote proliferation of rat renal tubular epithelial cells in culture. These results suggest that hucMSC-exs can reduce oxidative stress and programmed cell death, and promote proliferation. What is not clear is how these exosomes pull this off. Zhou and colleagues provide evidence that hucMSC-ex can reduce levels of the pro-death protein Bax and increase the pro-survival Bcl-2 protein levels in the kidney to increase cell survival and stimulate Erk1/2 to increase cell proliferation.

Another research group has reported roles for miRNAs and antioxidant proteins contained in stem cell-derived exosomes for repair of damaged renal and cardiac tissue (Cantaluppi V, et al., Kidney Int 2012, 82:412–427). In addition, MSC exosome-mediated delivery of glycolytic enzymes (the pathway that degrades sugar) to complement the ATP deficit in ischemic tissues was recently reported to play an important role in repairing the ischemic heart (Lai RC, et al., Stem Cell Res 2010, 4:214–222). Clearly, stem cell exosomes contain many factors, including proteins and microRNAs that can contribute to improving the pathology of damaged tissues.

The significance of the results of Zhou and colleagues and others is that stem cells may not need to be used clinically to treat diseased or injured tissue directly. Instead, exosomes released from the stem cells, which can be rapidly isolated by centrifugation, could be administered easily without the safety concerns of aberrant stem cell differentiation, transformation, or recognition by the immune system. Also, given that human umbilical cord exosomes are therapeutic in a rat model of acute kidney injury, it is likely that stem cell exosomes from a donor (allogeneic exosomes) would be effective in clinical studies without side effects.

These are fabulously interesting results, but Zhou and colleagues have also succeeded in raising several important questions. For example: What are the key pathways targeted by stem cell exosomes to regenerate injured renal and cardiac tissue? Are other tissues as susceptible to the therapeutic effects of stem cell exosomes? Do all stem cells release similar therapeutic vesicles, or do certain stem cells release vesicles targeting only specific tissue and regulate tissue-specific pathways? How can the therapeutic activity of stem cell exosomes be increased? What is the best source of therapeutic stem cell exosomes?

Despite these important remaining questions, the demonstration that hucMSCderived exosomes block oxidative stress, prevent cell death, and increase cell proliferation in the kidney makes stem cell-derived exosomes an attractive therapeutic alternative to stem cell transplantation.

See Dorronsoro and Robbins: Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Research & Therapy 2013 4:39.

Culture Medium from Endothelial Progenitor Cells Heals Hearts


Endothelial Progenitor Cells or EPCs have the capacity to make new blood vessels but they also produce a cocktail of healing molecules. EPCs typically come from bone marrow, but they can also be isolated from circulating blood, and a few other sources.

The laboratory of Noel Caplice at the Center for Research in Vascular Biology in Dublin, Ireland, has grown EPCs in culture and shown that they make a variety of molecules useful to organ and tissue repair. For example, in 2008 Caplice published a paper in the journal Stem Cells and Development in workers in his lab showed that injection of EPCs into the hearts of pigs after a heart attack increased the mass of the heat muscle and that this increase in heart muscle was due to a molecule secreted by the EPCs called TGF-beta1 (see Doyle B, et al., Stem Cells Dev. 2008 Oct;17(5):941-51).

In other experiments, Caplice and his colleagues showed that the culture medium of EPCs grown in the laboratory contained a growth factor called “insulin-like growth factor-1” or IGF1. IGF1 is known to play an important role in the healing of the heart after a heart attack. Therefore, Caplice and his colleagues tried to determine if IGF1 was one of the main reasons EPCs heal the heart.

To test the efficacy of IGF1 from cultured EPCs, Caplice’s team grew EPCs in the laboratory and took the culture medium and tested the ability of this culture medium to stave off death in oxygen-starved heart muscle cells in culture. Sure enough, the EPC-conditioned culture medium prevented heart muscle cells from dying as a result of a lack of oxygen.

When they checked to see if IGF1 was present in the medium, it certainly was. IGF1 is known to induce the activity of a protein called “Akt” inside cells once they bind IGF1. The heart muscle cells clearly had activated their Akt proteins, thus strongly indicating the presence of IGF1 in the culture medium. Next they used an antibody that specifically binds to IGF1 and prevents it from binding to the surface of the heart muscle cells. When they added this antibody to the conditioned medium, it completely abrogated any effects of IGF1. This definitively demonstrates that IGF1 in the culture medium is responsible for its effects on heart muscle cells.

Will this conditioned medium work in a laboratory animal? The answer is yes. After inducing a heart attack, injection of the conditioned medium into the heart decreased the amount of cell death in the heart and increased the number of heart muscle cells in the infarct zone, and increased heart function when examined eight weeks after the heart attacks were induced. The density of blood vessels in the area of the infarct also increased as a result of injecting IGF1. All of these effects were abrogated by co-injection of the antibody that specifically binds IGF1.

From this study Caplice summarized that very small amounts of IGF1 (picogram quantities in fact) administered into the heart have potent acute and chronic beneficial effects when introduced into the heart after a heart attack.

These data are good enough grounds for proposing clinical studies. Hopefully we will see some in the near future.