StemCells, Inc. Presents Two-Year Pelizaeus-Merzbacher Disease Data Suggesting Increased Myelination of Nerves


StemCells, Inc. has presented data of their two-year follow-up of patients with Pelizaeus-Merzbacher disease (PMD) who were treated with the Company’s proprietary HuCNS-SC cells. HuCNS-SC is a purified human neural stem cell line, and these neural stem cells can differentiate into a very wide variety of cell types of the nervous system, including different types of neurons and glial cells.

PMD is an inherited condition that involves the central nervous system. It is one of a group of genetic disorders called “leukodystrophies,” which all have in common degeneration of myelin. Myelin covers nerves and protects them, and promotes the efficient transmission of nerve impulses. PMD is caused by an inability to synthesize myelin (dysmyelination). Consequently, PMD individuals have impaired language and memory abilities, and poor coordination. Typically, motor skills are more severely affected than intellectual function; motor skills development tends to occur more slowly and usually stops in a person’s teens, followed by gradual deterioration.

Since PMD is an X-linked genetic disease, it is far more prevalent in males, and an estimated 1 in 200,000 to 500,000 males in the United States have PMD, but it rarely affects females.

Mutations in the PLP1 gene usually cause PMD. The PLP1 gene encodes proteolipid protein 1 and a modified version (isoform) of proteolipid protein 1, called DM20. Proteolipid protein 1 and DM20 are primarily in the central nervous system and are the main proteins found in myelin. The absence of proteolipid protein 1 and DM20 can cause dysmyelination, which impairs nervous system function and causes the signs and symptoms of Pelizaeus-Merzbacher disease.

In this trial, PMD patients were injected with HuCNS-SC cells. In this report, magnetic resonance imaging (MRI) studies were used to determine the amount of myelin that insulated particular nerves in the central nervous system. MRI examination of the patients revealed evidence of myelination that is more pronounced that what was seen in the one year post-transplantation exams. The gains in neurological function reported after one year were maintained, and there were no safety concerns.

Patients with PMD have insufficient myelin in the brain and their prognosis is very poor, usually resulting in progressive loss of neurological function and death. The neurological and MRI changes suggest a departure from the natural history of the disease and may represent signals of a positive clinical effect. These data were presented by Stephen Huhn, MD, FACS, FAAP, Vice President, CNS Clinical Research at StemCells, Inc., at the 2013 Pelizaeus-Merzbacher Disease Symposium and Health Fair being held at Nemours/Alfred I. duPont Children’s Hospital in Wilmington, Delaware.

“We are encouraged that the MRI data continue to indicate new and durable myelination related to the transplanted cells and that the data is even stronger after two years compared to one year,” said Dr. Huhn. “Even in the context of a small open-label study, these MRI results, measured at time points long after transplantation, make an even more convincing case that the HuCNS-SC cells are biologically active and that their effect is measurable, sustainable, and progressive. Our challenge now is to reach agreement with the FDA on how best to correlate changes in MRI with meaningful clinical benefit, as this will be a critical step in determining a viable registration pathway for PMD.”

The Company’s Phase I trial was conducted at the University of California, San Francisco, and enrolled four patients with “connatal” PMD, which is the most severe form of PMD. All four patients were transplanted with HuCNS-SC cells, and followed for twelve months after transplantation. During the year of post-transplantation observation, the patients underwent intensive neurological and MRI assessments at regular intervals. Since none of the patients experienced any serious or long-lasting side effects from the transplantation, the results of this Phase I trial indicate a favorable safety profile for the HuCNS-SC cells and the transplantation procedure.

Data from MRI analyses showed changes consistent with increased myelination in the region of the transplantation. This increased myelination progressed over time and persisted after the withdrawal of immunosuppressive drugs nine months after transplantation. These results support the conclusion of durable cell engraftment and donor cell-derived myelin in the transplanted patients’ brains. Also, routine neurological exams revealed small but consistent and measurable gains in motor and/or cognitive function in three of the four patients. The fourth patient remained clinically stable. These Phase I trial results were published in October 2012 in Science Translational Medicine, the peer review journal of the American Association for the Advancement of Science. Upon completion of the Phase I trial, all four patients were enrolled into a long-term follow-up study, which is designed to follow the patients for four more years.

Breast Cancer Clinical Trial Targets Cancer Stem Cells


Even though my previous posts about cancer stem cells have generated very little interest, understanding cancer as a stem cell-based disease has profound implications for how we treat cancer. If the vast majority of the cells in a tumor are slow-growing and not dangerous but only a small minority of the cells are rapidly growing and providing the growth the most of the tumor, then treatments that shave off large numbers of cells might shrink the tumor, but not solve the problem, because the cancer stem cells that are supplying the tumor are still there. However, if the treatment attacks the cancer stem cells specifically, then the tumor’s cell supply is cut off and the tumor will wither and die.

In the case of breast cancer, the tumors return after treatment and spread to other parts of the body because radiation and current chemotherapy treatments do not kill the cancer stem cells.

This premise constitutes the foundation of a clinical trial operating from the University of Michigan Comprehensive Cancer Center and two other sites. This clinical trial will examine a drug that specifically attacks breast cancer stem cells. The drug, reparixin, will be used in combination with standard chemotherapy.

Dr. Anne Schott, an associate professor of internal medicine at the University of Michigan and principal investigator of this clinical trial, said: “This is one of only a few trials testing stem cell directed therapies in combination with chemotherapy in breast cancer. Combining chemotherapy in breast cancer has the potential to lengthen remission for women with advanced breast cancer.”

Cancer stem cells are the small number of cells in a tumor that fuel its growth and are responsible for metastasis of the tumor. This phase 1b study will test reparixin, which is given orally, with a drug called paclitaxel in women who have HER2-negative metastatic breast cancer. This study is primarily designed to test how well patients tolerate this particular drug combination. However, researchers will also examine how well reparixin appears to affect various cancer stem cells indicators and signs of inflammation. The study will also examine how well this drug combination controls the cancer and affects patient survival.

This clinical trial emerged from laboratory work at the University of Michigan that showed that breast cancer stem cells expressed a receptor on their cell surfaces called CXCR1. CXCR1 triggers the growth of cancer stem cells in response to inflammation and tissue damage. Adding reparixin to cultured cancer stem cells killed them and reparixin works by blocking CXCR1.

Mice treated with reparixin or the combination of reparixin and paclitaxel had significantly fewer (dramatically actually) cancer stem cells that those treated with paclitaxel alone. Also, riparixin-treated mice developed significantly fewer metastases that mice treated with chemotherapy alone (see Ginestier C,, et al., J Clin Invest. 2010, 120(2):485-97).

ATHENA Trial Tests Fat-Derived Stem Cells as a Treatment for Heart Failure


The FDA-approved ATHENA trial is the brainchild of stem cell researchers at the Texas Heart Institute at St. Luke’s Episcopal Hospital. The ATHENA trial is the first trial in the United States to examine the efficacy of adipose-derived regenerative cells or ADRCs as a treatment for a severe form of heart failure.

To harvest ADRCs, Texas Heart Institute researchers used a technique that was developed by Cytori Therapeutics, which is a biotechnology company that specializes in cell-based regenerative therapies. Previous clinical trials in Europe strongly suggest that such ADR-based therapies are quite safe and feasible. To date, physicians are the Texas Heart Institute have treated six patients as a part of the ATHENA trial.

athena_process_illustration_500x369.jpg

James Willerson, the president and medical director of the Texas Heart Institute, is the principal investigator in the ATHENA trial. Willerson said, “We have found that body fat tissue is a valuable source of regenerative stem cells that are relatively easy to access. We have high hopes for the therapeutic promise of this research and believe that it will lead quickly to larger trials.”

The subjects for the ATHENA trial are patients who suffer from chronic heart failure due to coronary heart disease. Coronary heart disease results from blockage of the coronary vessels and feed the heart muscle and limits the oxygen supply to the heart muscle, and consequently, the pumping activity of the heart muscle. Data from the American Heart Association reveals that there are about 5.1 million Americans who currently live with heart failure, and in many cases, the only viable treatment is a left ventricular assist device (LVAD) or a heart transplant. Unfortunately, there are only about 2,200 heart transplants a year due to a severe shortage of organs.

Coronary artery disease

Patients who are enrolled in the ATHENA trials are randomized and some will receive a placebo treatment and others will receive the experimental treatment. All patients will undergo liposuction in order to remove adipose or fat tissue. Processing of the fat tissue isolates the ADRCs, and the experimental patients will have these cells injected directly into their heart muscle, but the placebo patients will receive injections of culture medium or saline that contains no cells. ATHENA will measure several data endpoints that include objective measures of heart function, exercise capacity, and questionnaires that assess the symptoms and health-related quality-of-life.

The US trial will enroll a total of 45 patients at several centers around the country and these centers include the Texas Heart Institute, Minneapolis Heart Institute, Scripps Green Hospital in San Diego, CA, the University of Florida at Gainesville, and Cardiology P.C. in Birmingham. Patients are being enrolled.

Healthline has recently compiled the statistics on heart disease in an impressive and colorful manner at this link.

Adult Stem Cells Isolated From Human Intestines


A laboratory at the University of North Carolina at Chapel Hill has, for the first time, isolated adult stem cells from human intestinal tissue. This achievement should provide a much-needed resource for stem cells researchers to examine the nuances of stem cell biology. Also, these new stem cells should provide stem cell researchers a new tool to treat inflammatory bowel diseases or to mitigate the side effects of chemotherapy and radiation, which often damage the gut.

Scott T. Magness, assistant professor in the departments of physiology at UNC, Chapel Hill, said, “Not having these cells to study has been a significant roadblock to research. Until now, we have not had the technology to isolate and study these stem cells – now we have the tools to start solving many of these problems.”

The study represents a leap forward for a field that for many years has had to resort to conducting experiments with mouse stem cells. While significant progress has been made using mouse models, differences in stem cell biology between mice and humans have kept researchers from investigating new therapeutics for human afflictions.

Adam Grace, a graduate student in Magness’ lab, and one of the first authors of this publication, noted, “While the information we get from mice is good foundational mechanistic data to explain how this tissue works, there are some opportunities that we might not be able to pursue until we do similar experiments with human tissue”

This study from the Magness laboratory was the first in the United States to isolate and grow single intestinal stem cells from mice. Therefore, Magness and his colleagues already had experience with the isolation and manipulation of intestinal stem cells. In their quest to isolate human intestinal stem cells, Magness and his colleagues also procured human small intestinal tissue for their experiments that had been discarded after gastric bypass surgery at UNC.

To develop their technique, Magness and others simply tried to recapitulate the technique they had developed in used to isolate mouse intestines to isolate stem cells from human intestinal stem cells. They used cell surface molecules found on in the membranes of mouse intestinal stem cells. These proteins, CD24 and CD44, were also found on the surfaces of human intestinal stem cells. Therefore, the antibodies that had been used to isolate mouse intestinal stem cells worked quite well to isolate human intestinal stem cells. Magness and his co-workers attached fluorescent tags to the stem cells and then isolated by means of fluorescence-activated cell sorting.

This technique worked so well, that Magness and his colleagues were able to not only isolated human intestinal stem cells, but also distinct types of intestinal stem cells. These two types of intestinal stem cells are either active stem cells or quiescent stem cells that are held in reserve. This is a fascinating finding, since the reserve cells can replenish the stem cell population after radiation, chemotherapy, or injury.

“Now that we have been able to do this, the next step is to carefully characterize these populations to assess their potential, said Magness. He continued: “Can we expand these cells outside the body to potentially provide a cell source for therapy? Can we use these for tissue regeneration? Or to take it to the extreme, can we genetically modify these cells to cure inborn disorders or inflammatory bowel disease? Those are some questions that we are going to explore in the future.”

Certainly more papers are forthcoming on this fascinating and important topic.

Stem Cell Homing Factor Used to Treat Heart Patients


In a clinical trial that is probably one of the first of its kind, researchers from the laboratory of Marc Penn at the Summa Cardiovascular Institute in Akron, Ohio, activated the stem cells of heart failure patients by means of gene therapy.

Penn and his colleagues delivered a gene that encodes stromal-cell derived factor-1 or SDF-1. SDF-1 is a member of the chemokine family of signaling proteins, and chemokines are proteins that direct cells to get up and move somewhere. Thus, for stem cells, SDF-1 acts as a kind of “homing” signal.

Stromal-cell derived factor
Stromal-cell derived factor

In this unique study, Penn and his collaborators introduced SDF-1 into the heart in order to summon stem cells to the site of injury and enhance the body’s stem cell-based repair process. In a typical stem cell-based study, researchers extract and expand the number of cells, then deliver them back to the subject, but in this study, no stem cells were extracted. Instead they were summoned to the site of injury by SDF-1.

Marc Penn, professor of medicine at Northeast Ohio Medical University in Rootstown, Ohio and the director of research at Summa Cardiovascular Institute said of his clinical trial: “We believe stem cells are always trying to repair tissue, but they don’t do it well — not because we lack stem cells but, rather, the signals that regulate our stem cells are impaired.”

Previous research by Penn and colleagues has shown SDF-1 activates and recruits the body’s stem cells to sites of injury and this increases healing. Under normal conditions, SDF-1 is made after an injury but its effects are short-lived. For example, SDF-1 is naturally expressed after a heart attack but this augmented expression of SDF-1 only lasts only a week.

In the study, researchers attempted to re-establish and extend the time that SDF-1 could stimulate patients’ stem cells. The trial enrolled 17 NYHA Class III heart failure patients, with left ventricular ejection fractions less than 40% and an average time from heart attack of 7.3 years. Three escalating JVS-100 doses were evaluated: 5 mg (cohort 1), 15 mg (cohort 2) and 30 mg (cohort 3). The average age of the participants was 66 years old.

Researchers injected one of three doses of the SDF-1 gene (5mg, 15mg or 30mg) into the hearts of these patients, and monitored them for up to a year. Four months after treatment, they found:
1. Patients improved their average distance by 40 meters during a six-minute walking test.
2. Patients reported improved quality of life.
3. The heart’s pumping ability improved, particularly for those receiving the two highest doses of SDF-1 compared to the lowest dose.
4. No apparent side effects occurred with treatment.
According to Penn, “We found 50 percent of patients receiving the two highest doses still had positive effects one year after treatment with their heart failure classification improving by at least one level,” Penn said. “They still had evidence of damage, but they functioned better and were feeling better.”

Penn’s study suggests that our stem cells have the potential to induce healing without having to be taken out of the body. Penn said, “Our study also shows gene therapy has the potential to help people heal their own hearts.”

At the start of the study, participants didn’t have significant reversible heart damage, but lacked blood flow in the areas bordering their damaged heart tissue. The study’s results — consistent with other animal and laboratory studies of SDF-1 — suggest that SDF-1 gene injections can increase blood flow around an area of damaged tissue, which has been deemed irreversible by other testing.

In further research, Penn and his team are comparing results from heart failure patients receiving SDF-1 with patients who are not receiving SDF-1. If the trial goes well, the therapy could be widely available to heart failure patients within four to five years, Penn said.

Researchers Find a Way to Derive Sustainable Retinal Cells from Induced Pluripotent Stem Cells


Researchers from the laboratory of Jason S. Meyer have designed a protocol to generate pigmented retinal cells from induced pluripotent stem cells (iPSCs). Induced pluripotent stem cells are made from adult cells by means of genetic engineering techniques that introduce four specific transcription factors into the cells that turn on a variety of genes that dedifferentiate the adult into an embryonic stem cell-like cell. This embryonic stem cell-like cell is an iPSC. Because iPSCs are similar to embryonic stem cells, they can differentiate into any adult cell type.

Last year, a clinical trial that used embryonic stem cells to produce pigmented retinal was published. This trial injected retinal pigmented epithelial cells derived from embryonic stem cells into the retinas of two patients. Both patients suffered from retinal diseases that affected the pigmented retina. Both patients showed eyesight improvements in the injected eye, but one patient showed improvements in both eyes. Therefore, the results of this experiment are largely inconclusively. Also, the derivation of human embryonic stem cells requires the destruction of human embryos, which ends the life of a young human person. Therefore, iPSCs offer a potentially better ethical alternative to embryonic stem cells.

In Meyer’s laboratory, Meyer and his co-workers have discovered have invented a way to differentiate iPSCs from patients into retinal pigmented epithelia (RPE), and photoreceptors (the light-sensitive cells in the retina). When tested in culture, the iPSC-derived RPE cells grew and functioned just as efficiently as RPEs made from more traditional methods.

According to Meyer, assistant professor of biology in the Indiana University School of Medicine Stark Neurosciences Research Institute, “Not only were we able to develop these (hiPSC) cells into retinal cells, but we were able to do so in a system devoid of any animal cells and proteins. Since these kinds of stem cells can be generated from a patient’s own cells, there will be nothing the body will recognize as foreign.”

Meyer also noted that this research should allow scientists to better reproduce these cells because they know exactly what components were included to spur growth and minimize or eliminate any variations. Also, the cells derived from iPSCs function in a very similar fashion to cells derived from human embryonic stem cells, but they are not surrounded by the controversy that accompanies embryonic stem cells or the danger of immune rejection issues because they are derived from individual patients.

Meyer added: “This method could have a considerable impact on the treatment of retinal diseases such as age-related macular degeneration and forms of blindness with hereditary factors. We hope this will help to understand what goes wrong when diseases arise and that we can use this method as platform for the development of new treatments or drug therapies.”

Meyer continued: “We’re talking about bringing cells a significant step closer to clinical use.”

Implantation of Irradiated Embryonic Stem Cells into the Heart Improves Heart Function After a Heart Attack


Adult stem cell transplantation has been used to treat heart attack patients in several different clinical trials. While the results have not been consistent, adult stem cells, it is clear that adult stem cells, primarily from bone marrow, and in some cases fat, help improve heart function. However, a major criticism of the use of adult stem cells is that they do not differentiate into heart muscle cells, but only improve the heart through “paracrine mechanisms,” which means that they secrete molecules that help heal the heart. This criticism is only represent part of the picture, since bone marrow stem cells transdifferentiate into heart muscle and blood vessel cells, albeit at a rather low rate, and fuse with endogenous cells to form hybrid cells that show improved function (Strauer BE, Steinhoff G. J Am Coll Cardiol. 2011 Sep 6;58(11):1095-104. doi: 10.1016/j.jacc.2011.06.016). In addition, adult stem cells activate endogenous cardiac stem cells to divide and replace lost heart muscle cells and make new blood vessels (Loffredo FS, et al., Cell Stem Cell. 2011 Apr 8;8(4):389-98. doi: 10.1016/j.stem.2011.02.002).

Embryonic stem cells, on the other hand, are thought to differentiate into heart muscle cells that integrate into the heart and directly replace the dead heart muscle cells, Animal studies do show such improvements (Caspi O, et al., J Am Coll Cardiol. 2007 50(19):1884-93). However, there is a caveat to all this: Most of the animal experiments with heart muscles derived from embryonic stem cells have only analyzed heart function for up to four weeks after transplantation. Experiments that examined heart function for longer than four weeks have not been able to show that these improvements are sustained after four weeks (van Laake LW, et al., Stem Cell Res. 2007 Oct;1(1):9-24. doi: 10.1016/j.scr.2007.06.001). Therefore, could it be possible that embryonic stem cell-derived cells also help the heart mainly through paracrine mechanisms?

A new paper from Piero Anversa’s and Richard Burt’s laboratories has shown that implantation of embryonic stem that were hit with radiation so that they cannot divide significantly improves heart function after a heart attack.

Experiments were conducted with mice and rhesus monkeys, and mouse and human embryonic stem cells (ESCs) were used. The ESCs were treated with 20 to 100 Grays of radiation, which completely abolished their ability to divide (a gray is the absorption of one joule of energy, in the form of ionizing radiation, per kilogram of matter).

The irradiated ESCs or iESCs were implanted into mice and Rhesus monkeys that had suffered a heart attack. Control animals were implanted with conditioned culture media from the ESC culture dishes.

In the mice and the Rhesus monkeys, the control animals showed little improvement and their hearts continued to deteriorate after the heart attack. However, the animals that had been implanted with the iESCs showed significant improvement of their heart function.

The authors in the discussion suggest that the iESCs might have suppressed the inflammatory response that occurs in the heart after a heart attack, but tissue sections of the hearts after the experiment showed that the iESC-implanted hearts had just as many immune cells infiltrating the tissue as the hearts of the control animals. Mesenchymal stem cells, however, do a very fine job of suppressing inflammation in the heart after a heart attack (see the recent paper by van den Akker et al., Biochimica et Biophysica Acta 1830 (2013): 2449-58). Therefore, the mechanisms by which ESCs improve heart function might be more paracrine-based than anything else. If this is the case, then why are embryonic stem cells being pursued for clinical purposes? Adult stem cells heal by means of paracrine mechanisms and can also sidestep the problem of immune rejection. Also, adult stem cells treatments do not require the dismemberment of young human beings at the embryo stage of their existence. Therefore, even though the present ESC lines are certainly appropriate for clinical and biological research, deriving more of them for clinical treatments is inappropriate, and even murderous.

The Role of Astrocytes in Lou Gehring’s Disease


A study from Columbia University and Harvard University has uncovered a complex interplay between neurons and support cells known as astrocytes that contributes to the pathology of ALS. Such an intricate interplay complicates regenerative therapies for this disease.

In the spinal cord, a group of neurons called motor neurons extend their axons to skeletal muscles and provide the neural signals for the muscles to contract, which allows movement. Motor neurons also have associated support cells known as glial cells, and a specific group of glial cells known as astrocytes associate with motor neurons in the spinal cord.

Astrocytes are star-shaped cells that surround neurons in the brain and spinal cord, and they outnumber neurons 50:1. Astrocytes are very active in the central nervous system, and serve to maintain, support, and repair the nervous tissue that they serve, and are responsible, in large part, for the plasticity of the nervous system.

astrocytes1 (1)

Motor neurons die off during the course of ALS, which leads to paralysis and death within two to fives years of diagnosis. ALS also affects neurons in the brain and it completely robs the individual of the ability to initiate movement or even breathe. There is, at present, no cure and no life-prolonging treatment for ALS.

Data from the ALS Association group suggests that astrocytes in ALS patients go from supporting neurons to strangling them. According to Lucie Bruijn, the chief scientist at the ALS Association in Washington D.C.,, these results seem to “strengthen the case that astrocytes are central to the ALS disease process.” She continued: “Furthermore, the results are based on an exciting new disease model system, one that will allow us to test important hypotheses and search for new therapeutic targets.”

In a cell culture system of ALS, in which neurons derived from embryonic cells were co-cultured with normal and ALS astrocytes, Bruijn’s team found that gene expression patterns in those neurons associated with ALS astrocytes were abnormal. In this experiment, neurons derived from embryonic stem cells with co-cultured with normal and ALS affected astrocytes. In a time course experiment in which gene expression profiles were analyzed from the neurons after specific amounts of time, the gene expression patterns from the normal astrocytes co-cultured with neurons were compared with those of the ALS-affected astrocytes co-cultured with neurons. From these experiments, it became clear that the ALS-affected astrocytes did not communicate properly with the nearby neurons.

Even though neurons communicated with each other by means of the release of neurotransmitters, astrocytes and other glial cells also communicate with each other by means of the release of various molecules. This astrocyte-neuron communication maintains healthy neuron function. However, in the case of ALS, the neuron-astrocyte communication is “profoundly disrupted” and is disruption is not neuron dependent, since in this experiment, the neurons were normal. Without proper communication with their astrocytes, motor neurons the spinal cords of ALS patients are not able to function properly.

According to Bruijn, “This study points out several potential points for treatment intervention.” The protection of motor neurons is the goal, since the astrocytes seem to be doing little to protect and support the neurons and also might be hurting them.

An added bonus to this study is that when spinal cords from mice with a disease that shows some similarities to ALS have their gene expression profiles compared to these gene expression profiles observed in the cultured neurons, the results are remarkably similar. This shows that culture system does recapitulate what goes on in the spinal cord.

The next step is to show that the molecular abnormalities discovered in this system mimics those that occur in human disease. This publication utilized mouse cells, and the human disease, while similar, is not exactly the same.

A Protein Responsible for Cancer Stem Formation Provides a Drug Target


Eighty-five percent of all tumors are carcinomas, which are tumors that form in layers of cells that line surfaces.  Such cell layers are known as an epithelium. When carcinomas form, they undergo an “epithelial-mesenchymal” transformation” or EMT.  EMT means that cells go from being closely aligned and tightly bound to each other in a an organized layer to cells that have little to do with each other and grow in unorganized clumps.  Is there a molecule that unites the carcinomas and if so is this molecule a potential drug target for cancer treatments?

Mammary Carcinoma
Mammary Carcinoma

Researchers at the University of Texas MD Anderson Cancer Center have identified a protein that seems to play a pivotal role in EMT.  This protein, FOXC2, may lay at the nexus of why some carcinomas resist chemotherapy and grow uncontrollably and spread.  FOXC2 could, conceivably represent a novel drug target for chemotherapy.

Sendurai Mani, assistant professor of Translational Molecular Pathology and co-director of the Metastasis Research Center at MD Anderson, said, “We found that FOXC2 lies at the crossroads of the cellular properties of cancer stem cells and cells that have undergone EMT, a process of cellular change associated with generating cancer stem cells.”

Cancer stem cells are fewer in number than other tumor cells, yet research has tied them to cancer progression and resistance to treatment.  Abnormal activation of EMT can actually create cancer stem cells, according to Mani.

Mani continued, “There are multiple molecular pathways that activate EMT.  We found many of these pathways also activate FOXC2 expression to launch this transition, making FOXC2 a potentially efficient check point to block EMT from occurring. ”  Mani’s research group used experiments with cultured cells and mice to discover these concepts, but the next step will require assessing the levels of FOXC2 expression in human tumors samples.

In the meantime, these new data from Mani’s research team may have profound implication for the treatment of particular types of carcinomas that have proven to be remarkably stubborn.  Breast cancers, for example, are typically carcinomas of the mammary gland ductal system.  A specific group of breasts cancers are very notoriously resistant to treatment, and FOXC2 seems to be at the center of such breast cancers.

The anti-cancer drug sunitinib, which is marketed under the trade name Sutent, has been approved by the US Food and Drug Administration (US FDA) for three different types of cancers.  In this study, sunitinib proved effective against these particularly stubborn types of breast cancer; the so-called “triple-negative, claudin-low” breast cancers.

Sunitinib
Sunitinib

Mani explained why such breast cancers are so resistant to treatment:  “FOXC2 is a transcription factor, a protein that binds to DNA in the promoter region of genes to activate them.  For a variety of reasons, transcription factors are hard to target with drugs.”

However, sunitinib seems to target these triple-negative breast cancers.  When mice with triple-negative breast cancer were treated with sunitinib, the treated mice had smaller primary tumors, longer survival, and fewer incidences of metastasis.  The cancer cells also showed a marked decreased in their ability to form “mammospheres,” or balls of cancer stem cells (this is an earmark of cancer stem cells).  Thus sunitinib seem to attack cancer stem cells.

As it turns out, FOXC2 activates the expression of the platelet-derived growth factor receptor-beta (PDGFRc-beta).  Activation of PDGFRc-beta drives cell proliferation in FOXC2-positive cells, and sunitinib inhibits PDGFRc-beta and inhibits cells that have active FOXC2 and undergoing EMT.

Triple-negative breast cancer cells lack receptors that are used by the most common anti-cancer drugs.  These deficiencies are responsible for the resistance of these cancers to treatment.  Such cancer cells also tend to under go EMT because they lack the protein claudin, which binds epithelial cells together.  Without claudin, these cancer cells become extremely aggressive.

Since cells undergoing EMT are heavily expressing FOXC2, Mani and his colleagues used a small RNA molecule that makes a short hairpin and inhibits FOXC2 synthesis.  Unfortunately, blocking FOXC2 had no effect on cell growth, but it did alter the physical appearance of the cells and reduced their expression of genes associated with EMT and increased the expression of E-cadherin, a protein necessary for epithelial cell organization.  Breast cancer cells also became less invasive when FOXC2 was inhibited, and they down-regulated CD44 and CD24, which are markers of cancer stem cells..  Additionally, triple-negative breast cancer cells that had FOXC2 inhibited had a reduced ability to make mammospheres.  Thus, FOXC2 expression is elevated in cancer stem cells, and inhibition of FOXC2 decreased the ability of the cancer stem cells to behave as cancer stem cells.

Mammospheres
Mammospheres

Mani’s group also approached these experiments from another approach by overexpressing FOXC2 in malignant mammary epithelial cells.  This forced FOXC2 expression drove cells to undergo EMT and become much more aggressive and metastatic (the cancer spread to the liver, hind leg, lungs, and brain).  Breast cancer cells without forced FOXC2 overexpression showed no tendency to metastasize.

Finally, Mani’s group examined metastatic mammary tumors that were highly aggressive when implanted into nude mice (mice that cannot reject transplants).  Two of the tumors were claudin-negative and both of these tumors showed elevated FOXC2 expression.  When FOXC2 expression was blocked by Mani’s hairpin RNA, the claudin-negative tumors became less aggressive and grew more as mesenchymal cells.  The cells that underwent EMT also showed high levels of PDGF-RC-beta expression.

Mani said of these data: “We thought PDGF-B might be a drugable target in these FOXC2-expressing cells.”  Mani’s group also showed that suppressing FOXC2 reduced the expression of PDGFRC-Beta.  Thus, this small molecule might be an effective therapeutic strategy for treating these hard-to-treat breast cancers.

MD Anderson has filed a patent application connected to this study.

See Hollier B.G., Tinnirello A.A., Werden S.J., Evans K.W., Taube J.H., Sarkar T.R., Sphyris N., Shariati M., Kumar S.V., Battula V.L., Herschkowitz J.I., Guerra R., Chang J.T., Miura N., Rosen J.M., and Mani S.A.,. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Research. e-Pub 2/2013.

Stimulating Stem Cell Activity to Prevent Aging-Related Mental Decline


Aging tends to rob us of our ability to concentrate, recall facts, and reason, and this decline seems to stem from the fact that older brains generate fewer neurons than they did when they were younger. However, German researchers have discovered a molecule that accumulates with age that inhibits the formation of new neurons. This finding might help scientists design therapies to prevent age-related mental decline.

This molecule, Dkk1 or Dickkopf-1, accumulated in the brains of aged mice. If Dkk1 production was blocked, neurons were born at much higher rates. Dr. Ana Martin-Villalba, the senior author of this work and a member of the German Cancer Research Center in Heidelberg. Said, “We released a brake on neuronal birth, thereby resetting performance in spatial memory tasks to levels observed in younger animals.”

Aged mice that lacked Dkk1 performed just as well in cognitive tests that included memory and recognition tests as younger mice because of the ability of their neural stem cells to self-renew and generate immature neurons.

Younger mice that lacked Dkk1 were less susceptible to developing acute stress-induced depression than normal mice. This seems to indicate that in addition to slowing memory loss during aging, neutralizing Dkk1 could be beneficial in counteracting symptoms of depression.

Martin-Villalba said that there are ongoing clinical trials to test inhibitors of Dkk1 for other medical purposes. “The design of inhibitors that reach the brain might enable the prevention of cognitive decline in the aging population and depression in the general population,” she said.

Making Preneurons from White Blood Cells for ALS Patients


ALS or amyotrophic lateral sclerosis is a disease that results in he death of motor neurons. Motor neurons enable skeletal muscles to contract, which drives movement. The death of motor neurons robs the patient of the ability to move and ALS patients suffer a relentless, progressive, and sad decline that culminates in death from asphyxiation. Treatments are largely palliative, but stem cells treatments might delay the onset of the disease, or even regenerate the dead neurons.

To this end a Mexican group from Monterrey has used a protocol to isolate white blood cells from the circulating blood of ALS patients, and differentiate a specific population of stem cells from peripheral blood into preneurons. Although these cells were not used to treat the patients in this study, such cells do show neuroprotective features and using them in a clinical study does seem to be the next step.

In this study, CD133 cells were isolated from peripheral blood and subjected to a special culture system called a neuroinduction system. After 2-48 hours in this system, the cells showed many features that were similar to those of neurons. The cells express a cadre of neural genes (beta-tubulin III, Oligo 2, Islet-2, Nkx6.1, and Hb9). Some of the ells also grew extensions that resemble the axons of true neurons.

Interestingly, the conversion of the CD133 cells into preneurons showed similar efficiency regardless of the age, sex, or health of the individual. Even those patients with more advanced ALS had CD133 cells that differentiated into preneurons with efficiencies equal to those of their healthier counterparts. While each patient showed variation with regards to the efficiency at which their CD133 cells differentiated into preneurons, these variations could not be correlated with the age, health or sex of the patient.

The fact that these preneurons expressed Oligo2, suggests that they could differentiate into motor neurons. Therefore, even though this study was small (13 patients), it certainly shows that cells that might provide treatment possibilities for ALS patients can be made from the patient’s own blood cells.

See Maria Teresa Gonzalez-Garza et al., Differentiation of CD133+ Stem Cells from Amyotrophic Lateral Sclerosis Patients into Preneuron Cells. Stem Cells Translational Medicine 2013;2:129-35.

Treating Diabetic Retinopathy with Stem Cells


Scientists at Queen’s University Belfast hope to design a new approach for treating the eyesight of diabetic patients by using adult stem cells.

Millions of diabetics every year are at risk for losing their eyesight due to diabetic retinopathy. When high blood sugar causes blood vessels in the eye to leak or become blocked, failed blood flow damages the retina and lead to vision impairment. If left untreated, diabetic retinopathy can lead to blindness.

The Queen’s University Belfast group have initiated the REDDSTAR study, which stands for Repair of Diabetic Damage by Stromal Cell Administration, and this study involves researchers from the Queen’s Center for Vision and Vascular Science in the School of Medicine, Dentistry and Biomedical Sciences. REDDSTAR begins with the isolation of stem cells from patients and expanding them in the laboratory. Then these patient-specific cells are delivered to the patient from whom they were originally drawn in order to repair the blood vessels in the eye. This blood vessel repair is especially useful in patients with diabetic retinopathy.

Presently, diabetic retinopathy is treated with laser ablation of new blood vessels that grow in response to damage. These new blood vessels become so dense that they obscure vision. However, presently, there are no treatments to control the progression of diabetic complications.

Alan Stitt, the director of the Centre for Vision and Vascular Science at Queen’s and lead scientist for the REDDSTAR study, said, “The Queen’s component of the REDDSTAR study involves investigating the potential of a unique stem cell population to promote repair of damaged blood vessels in the retina during diabetes.” Professor Stitt continued: “The impact could be profound for patients, because regeneration of damaged retina could prevent progression of diabetic retinopathy and reduce the risk of vision loss.”

“Treatments for diabetic retinopathy are not always satisfactory. They focus on end-stages and fail to address the root causes of the condition. A novel, alternative therapeutic approach is to harness adult stem cells to promote regeneration of the damaged retinal blood vessels and thereby prevent and/or reverse retinopathy.”

Stitt said the new research project is one of several regenerative medicine approaches ongoing at his research center. Their approach is to isolate a rather well-defined population of stem cells and then deliver those stem cells to sites in the body that have been ravaged by diabetes. In particular patients, these strategies have produced remarkable benefits from stem cell-mediated repair of their blood vessels. Treatments such as this one are simply the first step in the quest to develop exciting, effective and new therapies in an area of medicine where such therapies are desperately needed.

In the REDDSTAR study, stem cells from bone marrow are used and these stem cells are provided by Orbsen Therapuetics, which is a spin-off from the Science Foundation Ireland-funded Regenerative Medicine Institute (REMEDI) at NUI Galway.

This project will design protocols for growing these bone marrow-derived stem cells and they will be tested in several preclinical models of diabetes and diabetic complications at research centers in Belfast, Galway, Munich, Berlin, and Porto before human clinical trails take place in Denmark.

Queen’s Centre for Vision and Vascular Science is a key focus of the University’s ambitious 140-million pound “together we can go Beyond” fundraising campaign. This campaign is due to expand the Vision Science program further when the University’s new 32-million pound Wellcome-Wolfson Centre for Experimental Medicine opens in 2015. Along with vision, two new programs in Diabetes and Genomics will also be established in the new Center. These Center should stimulate further investment and global collaborations between biotech and health companies in Ireland.

Reprogramming Neurons into New Cells


Researchers from Harvard’s Department of Stem Cell and Regenerative Biology have succeeded in reprogramming one type of neuron into a different type of neurons in a living animals.  Such an experiment has never been done before.  These researchers, Paola Arlotta and Caroline Rouaux said that their work “tells you that maybe the brain is not as immutable as we always thought, because at least during an early window of time one can reprogram the identity of one neuronal class into another”  Arlotta, an associate professor in Harvard’s Department of Stem Cell and Regenerative Biology (SCRB).

Direct lineage reprogramming of differentiated cells within the body was first proven by the SCRB co-chair and Harvard Stem Cell Institute  (HSCI) co-director Doug Melton and colleagues five years ago.  Workers in Melton’s lab succeeded in reprogramming exocrine pancreatic cells directly into insulin-producing beta cells.  Now Arlotta and Rouaux now have shown that neurons can change too.  Their work has been published in the journal Nature Cell Biology

In their experiments, Arlotta and Rouaux targeted a group of neurons known as callosal projection neurons.  Collosal projection neurons connect the two hemispheres of the brain.  After specific treatments, the collosal projections neurons in this study were converted into corticofugal projection neurons.  The significance of corticofugal projection neurons are not lost on Arlotta and Rouaux because they are a type of corticospinal motor neuron, which is one of two populations of neurons destroyed in Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease.

To achieve such reprogramming of neuronal identity, the researchers inserted a gene for a transcription factor known as Fezf2 into the collosal neurons.  Fexf2 plays a central role in the development of corticospinal neurons in the embryo.  The collosal neurons retracted their connects to the other hemisphere and made connections with neurons in the lower layers of the cerebral cortex.

Luci Bruijn, a neuroscientist who was not directly involved in this work noted, “This discovery tells us again that the brain is a somehow flexible system and gives us more evidence that reprogramming neurons to take on new identities and, perhaps, that new functions are possible. For those working to treat neurodegenerative diseases, that is reassuring.”

This work did not take take place in a culture dish in a laboratory.  Instead it was done in the brains of living mice.  The mice were young, so it is still not certain if such reprogramming could occur in older animals or even humans.  If such reprogramming is possible, the implications for the treatment of neurodegenerative diseases could be enormous.

“Neurodegenerative diseases typically affect a specific population of neurons, leaving many others untouched. For example, in ALS it is corticospinal motor neurons in the brain and motor neurons in the spinal cord, among the many neurons of the nervous system, that selectively die,” Arlotta said. “What if one could take neurons that are spared in a given disease and turn them directly into the neurons that die off? In ALS, if you could generate even a small percentage of corticospinal motor neurons, it would likely be sufficient to recover basic functioning.”

Bruijn said of this work, “Understanding the constraints and possibilities of nervous system development allows us to consider new experiments and new strategies for therapy development. The most immediate importance of this finding is likely to be in the laboratory, where it will help us understand more about how the nervous system may respond when neurons are injured as they are in ALS.”

Isolation of Cancer Stem Cells from Childhood Tumor


Benjamin Dekel, the head of the Pediatric Stem Cell Research Institute in Tel Aviv, Israel, and his team have isolated cancer stem cells from tumors found in the kidneys of some children. Wilms’ tumor is an inherited for of cancer that is found in the kidneys of particular children at a young age. Fortunately, these tumors are easily removed, but these children are at risk for other cancers throughout their lives.

Wilms tumor

Accord to Professor Dekel, “In earlier studies, cancer stem cells were isolation from adult cancers of the breast, pancreas, and brain, but so far much less is known about stem cells in pediatric cancers.” Professor Dekel continued, “Cancer stem cells contain the complete genetic machinery necessary to start, sustain and propagate tumor growth and they are often referred to as cancer initiating cells. As such, they not only represent a useful system to study cancer development but they also serve as a way to study new drug targets and potential treatments designed to stop the growth and spread of different types of cancer. We have demonstrated for the first time the presence of cancer stem cells in a type of tumor that is often found in children.”

Wilm’s tumors represent the most frequent type of kidney tumor found in children, and while children do usually respond well if the tumors are removed early surgically and if the patients are given chemotherapy, recurrences are possible and they can spread to other tissues.

Conventional chemotherapy is toxic to all cells in the body and if given to children may lead to the development of secondary cancers when they become adults. Thus, scientists would like to target tumor cells in as specific a manner as possible.

Researchers were able to remove parts of the tumors of cancer patients and graft them into mice. This procedure allowed researchers to test for the presence of cancer stem cells, since only the cancer stem cells could propagate the tumor from one animal to another. In the case of Wilms’ tumor, it was clear that cancer stem cells were present and could even be isolated from the rest of the tumor cells.

What Does Breast Cancer Have to Do With Skin Stem Cells?


BRCA1 is a gene that plays a huge role in breast cancer. Particular mutations in BRCA1 predispose women increased risks of breast cancer cervical, uterine, pancreatic, and colon cancer and men to increased risks of pancreatic cancer, testicular cancer, and early-onset prostate cancer.

BRCA1 encodes a protein that helps repair damage to chromosomes. When this protein product does not function properly, cells cannot properly repair acquired chromosomal damage, and they die or become transformed into cancer cells.

What does this have to do with stem cells? A study led by Cédric Blanpain from the Université libre de Bruxelles showed that BRCA1 is critical for the maintenance of hair follicle stem cells.

Peggy Sotiropoulou and her colleagues in Blanpain’s laboratory showed that when BRCA1 is deleted, hair follicle cells how very high levels of DNA damage and cell death. This accumulated DNA damaged drives the follicle stem cells to divide furiously until they burn themselves out. This is in contrast to the other stem cell populations in the skin, particularly those in the sebaceous glands and epidermis, which are maintained and seem unaffected by deletion of BRCA1.

Sotiropoulou said of these results: “We were very surprised to see that distinct types of cells residing within the same tissue may exhibit such profoundly different responses to the deletion of the same crucial gene for DNA repair.”

This work provides some of the first clues about how DNA repair mechanisms in different types of adult stem cells are employed at different stages of stem cells activation. Blanpain and his group is determining if other stem cells in the body are also affected by the loss of BRCA1. These results might elucidate why mutations in BRCA1 causes cancer in the breast and ovaries, but not in other tissues.

Glucosamine, Chondroitin and Delaying Osteoarthritis


I have a confession to make. I have been taking 1200 mgs of glucosamine sulfate for the past 5-6 years for my knee cartilage. I do not presently have osteoarthritis, but I am trying to stave it off by taking this supplement.

Does this supplement work? That’s hard to say for certain because the studies disagree. There are theoretical reasons to suspect that glucosamine would help with cartilage deposition. Cartilage is very rich in a group of sticky, sugary compounds called “glycosaminoglycans,” which have the unfortunate acronym of GAGs. GAGs consist of repeating two-sugar motifs, and the building block for the vast majority of these two-sugar motifs is glucosamine. Therefore, glucosamine is a main building block of a prominent component of cartilage.

What about chrondroitin? Chondroitin is a GAG that usually comes attached to a protein. This complex of GAG + backbone protein is called a “proteoglycan.” The chondroitin you get in the store is a repeating polymer of a two-sugar motif, and this complex molecule is either degraded in your digestive system by bacteria, or by our own gastrointestinal tract.  The degradation and absorption of chondroitin probably varies considerably from person to person.  If chondroitin is absorbed then the building blocks of chondroitin can potentially help build cartilage, since chondroitin-containing proteoglycans are important structural components of cartilage.  There is also the possibility that chondroitin precursors prevent the breakdown of cartilage.

Chondroitin_sulfate-over

In 2006, a good-sized study called the GAIT study was published in the New England Journal of Medicine (Clegg, D.O. et al. (2006). Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. New Eng. J. Med. 354(8):795-808). In this study, 1583 patients with symptomatic knee osteoarthritis were randomly assigned to different treatment subgroups. These groups were:

a) chondroitin sulphate alone (400 mg 3x a day)
b) glucosamine hydrochloride alone (500 mg 3x a day)
c) combined glucosamine hydrochloride/chondroitin sulphate (same doses but combined)
d) celecoxib (Celebrex®) (200 mg per day)
e) placebo (inactive dummy tablet)

Daily dosages for glucosamine and chondroitin were 1500 mgs and 1200 mgs, respectively. The efficacious dosage for these supplements have yet to be determined. Therefore, these dosages are a best guess. Celecoxib was included as a positive control for the GAIT study, since celecoxib is FDA approved for the management of osteoarthritis pain. Therefore, investigators therefore expected participants in this group to experience some pain relief, which would serve to validate the results of the GAIT study.

The GAIT study found that when patients were divided into two groups based on pain levels, 1,229 had mild pain and 354 had moderate to severe pain. With regard to the effectiveness of these supplements, neither glucosamine nor chondroitin sulphate either on their own or in combination were effective in reducing pain. However, when only those patients with moderate to severe pain was analyzed the combination of glucosamine and chondroitin sulphate was effective for pain relief. Unfortunately, no cartilage thickness studies were performed to determine if the supplements augment cartilage thickness. The GAIT study was publicly funded, and therefore, accusations of conflict of interest could not be used to discredit this study.

in 2005, results from the GUIDE study were presented at the 2005 Annual Meeting of the American College of Rheumatology. This study was funded by glucosamine manufacturers and examined of pain and mobility in 318 osteoarthritis sufferers between the ages of 45 and 75 at 13 European hospitals. Participants in this study were divided into three groups:

a) glucosamine sulphate in soluble powder form 1500mg daily
b) acetaminophen (e.g. Tylenol® and paracetamol) 3000mg daily
c) placebo

In addition, subjects in all three groups were allowed to take ibuprofen as needed as a ‘rescue’ for pain relief.

The GUIDE study found that glucosamine sulphate and acetaminophen were more effective in reducing pain than placebo. Patients who took glucosamine sulphate experienced greater pain relief than patients on acetaminophen.

The GUIDE and GAIT studies were positive for glucosamine and chondroitin, but there are negative studies too. In October 2004, Jolanda Cibere and others published a study in the journal Arthritis Care and Research in which they gave glucosamine or a placebo to arthritis suffers and then discontinued them. 42% of the patients receiving the placebo experienced a disease flare-up and 45% of the glucosamine-receiving patients experienced a flare-up. Also, the time to disease flare was not significantly different in the glucosamine compared with placebo group. Thus Cibere and others concluded that “this study provides no evidence of symptomatic benefit from continued use of glucosamine sulfate.”

The bottom line on all this is the glucosamine and chondroitin perform inconsistently in controlled studies. When poor-quality studies are excluded, glucosamine seems to delay arthritis. The highly respected Cochrane Library published a summary of human clinical trials with glucosamine and when the poor-quality trials were excluded, Towheed and his colleagues concluded that glucosamine provided relief of the symptoms of arthritis and also, based on X-rays, helped delay the onset of osteoarthritis.

However, the European Food Safety Authority reviewed over 60 articles on glucosamine and came to a completely different conclusion. In 2012, the EFSA concluded that “The Panel concludes that a cause and effect relationship has not been established between the consumption of glucosamine and maintenance of normal joint cartilage in individuals without osteoarthritis.”

In 2009, in the Journal, Arthroscopy, Vangsness, Spiker, and Erickson came to a somewhat blasé conclusion, “glucosamine sulfate, glucosamine hydrochloride, and chondroitin sulfate have individually shown inconsistent efficacy in decreasing OA pain and improving joint function.”

The long and the short of it is that these supplements might work. Furthermore, my best guess at this point is that they probably work better for some people than for others. So should you take glucosamine or even chondroitin? All our information at this point says that it is safe to do so. No serious or even moderate side effects have been observed by taking these supplements. Secondly, they might work for some people. How do know if you are one of them? By taking the supplement.

I realize that this post is probably very unsatisfying to many of you, but some are very enthusiastic about glucosamine and chondroitin, and I think that this enthusiasm needs to be tempered by a hard dose of reality.  There is much we simply do not know at this time about the efficacy of these supplements, and more work needs to be done before we can say anything definitive about them.   A recent study shows that large doses of chondroitin (1200 mgs) are effective at reducing symptoms in patients with osteoarthritis of the knee, but given the vagaries of chondroitin absorption (see above), it is unlikely that we can make any hard and fast conclusions about it.

One more note about these supplements.  Several studies have shown that the quality of over-the-counter glucosamine vary considerably.  Be careful what you buy and from whom you buy your supplements.  Consumer Reports has shown that some supplements are even spiked with prescription drugs!  So caveat emptor and do not believe the marketer’s own statements about their supplements.

Myriad Genetics Hordes Breast Cancer Data


Kathleen Sloan the president of the National Organization of Women has a troubling article at the Center for Bioethics and Culture website. It tells the story of a biotechnology company called Myriad Genetics and it BRCA1 & 2 test.

What the heck is BRCA1 & 2?  BRCA stands for “breast cancer” and mutations in BRCA 1 or 2 predispose females to breast and ovarian cancer. Mutations in BRCA genes also increase the risk of colon, prostate and pancreatic cancer.  Approximately 7% of breast cancer and 11 – 15% of ovarian cancer cases are caused by mutations in the BRCA genes.  If someone carries a mutation in either BRCA 1 or 2, they have a syndrome called Hereditary Breast and Ovarian Cancer (HBOC) syndrome.

The BRCA genes encode proteins that help repair DNA when it is damaged. Even though BRCA 1 & 2 work with several other proteins to accomplish this repair, mutations in the BRCA genes that compromise the quality of the proteins they encode can diminish the ability of cells to repair their DNA. Loss of efficient DNA repair systems leads to greater numbers of mutations in cells, some of which cause either loss of tumor suppress genes that normally put the brakes of cell proliferation, or activation of proto-oncogenes, which encode proteins that promote cell proliferation. Loss of tumor suppressor genes and activation of proto-oncogenes produces a cancer cell, and mutations in BRCA 1 or 2 and accelerate the onset of cancer cell formation (this is a highly simplified explanation and I apologize to the aficionados out there, but I am trying put the cookies on a nice low shelf).

Myriad Genetics came along and developed a genetic test for cancer-causing mutations in BRCA 1 & 2. This is good news, but Myriad Genetics is presently with holding their data from patients. This is not good news. Myriad Genetics wants to generate a database of mutations found in BRCA 1 and 2 genes from women all over the world. Some of these mutations do not affect the function of the encoded protein and do not predispose the patient to breast cancer, but some do. Which ones are harmful and which ones are not?

At this point things get sticky. Myriad has complied its sequence data on BRCA in order to construct a “variants of unknown significance” or VUS. Such a compilation would be invaluable, since it would help physicians correctly interpret the results of a breast cancer test. According to its present data archive, Myriad Genetics claims that only 3% of its tests fall into the VUS unknown category. However, other testing services report a 20% VUS rate. Who’s right? hard to say, given that Myriad Genetics will not release its data. Apparently they feel that their data has commercial value.

The problem is that lots of outfits that provided data to Myriad Genetics free of charge in order for them to develop their test. These other outfits have all their data available on public databases. What about Myriad Genetics – nope.

According to Ms. Sloan, “Myriad Genetics, producer of the world’s biggest-selling gene test for breast and ovarian cancers, has become synonymous with corporate greed. In an egregious breach of bioethics, the company refuses to share groundbreaking knowledge that could benefit cancer patients.”

Myriad worked hard to develop this test – I do not think anyone is contesting that. Myriad Genetics has every right to make money off their test, but when they start hoarding potentially life-saving data, I think Ms. Sloan is right that they have crossed the line.

Myriad Genetics is also being sued because of their attempts to patent the BRCA genes. An impressive consortium of researchers, genetic counselors, women patients, cancer survivors, breast cancer and women’s health groups, and scientific associations representing 150,000 geneticists, pathologists and laboratory professionals are all plaintiffs in this lawsuit against the U.S. Patent Office, Myriad Genetics and the University of Utah Research Foundation, which hold the patents on the genes.

The lawsuit avers that patents on human genes violate the First Amendment because genes are “products of nature.” Therefore, such things cannot be patented. Such an argument has a strong intuitive appeal, and is almost certainly correct.

Read Ms. Sloan’s article here and see what you think.

Blood Vessel-Making Stem Cells From Fat


Blood vessel obstruction deprives tissues of life-giving oxygen and leads to the death of cells. If enough cells within a tissue die, the organ in which whose tissues reside could experience organ failure.

To quote the Sound of Music, “How does one solve a problem like blood vessel obstruction?” The obvious answer is to make new blood vessels to replace the blocked ones. Scientists have identified growth factors that are important in blood vessel formation during development. Therefore, injecting these growth factors should lead to the formation of new blood vessels, right? Unfortunately, such a strategy does not work very well (see Collison and Donnelly, Eur J Vasc Endovasc Surg 2004 28:9-23). Therefore, vascular specialists have focused on the ability of stem cells make new blood vessels, and this approach has yielded some very definite successes.

During development, the same stem cell gives rise to blood vessels and blood cells. This stem cell, the hemangioblast is found in a structure known as the yolk sac (even though it never functions as a yolk sac). In the yolk sac, during the third week of development, little specs form called “blood islands. These blood islands are small clusters of hemangioblasts with the cells at the center of the cluster forming blood cells and the cells at the periphery of the blood island forming blood vessels.

In adults, blood cell-making stem cells are found in the bone marrow. Blood vessel-making stem cells are endothelial progenitor cells or EPCs can be rather easily isolated from peripheral blood, however they are thought to originate from bone marrow. EPCs are not a homogeneous group of cells. There are different types with different surface molecules found in different locations.

Recently another cell from circulating blood called an “endothelial colony forming cell” or ECFC has been discovered, and this cell can attach to uncoated plastic surfaces in a growth medium. These cells can be grown to high numbers, even though it takes a rather long time to expand them. Once the ECFC culture system is further perfected, ECFCs will be excellent candidates for therapeutic trials (Reinisch et al., Blood 2009 113: 6716-25).

Fat tissue is also a reservoir of EPCs and mesenchymal stem cells. Fat-based mesenchymal stem cells help induce blood vessel formation and stimulate fat-based EPCs form blood vessels. Because of this remarkable “one-two punch” in fat, with cells that stimulate blood vessel formation and cells that actually form blood vessels, fat is a source of blood vessel-forming cells that can be used for therapeutic purposes.

Stem cells from fat.
Stem cells from fat.

Several pre-clinical experiments and presently ongoing clinical trials have examined the ability of fat-based stems to treat patients with conditions that result from insufficient circulation to various tissues. In rodents, experimental obstruction of the blood vessels in the hindlimb create a condition called “hindlimb ischemia.” In a rodent model of hindlimb ischemia, human fat-based stem cell applications not only improve the use of the limb and decrease limb damage, but also induce the formation of new blood vessels that definitely come from the applied stem cells (Miranville, et al., Circulation 2004 110: 349-55; Planat-Bernard, et al., Circulation 2004 109: 656-63 & Moon et al., Cell Physiol Biochem 2006 17: 279-90). Several clinical trials have been conducted with bone marrow-based EPCs for limb-based ischemia in humans, and these trials have been largely successful(see Szoke and Brinchmann, Stem Cells Translational Medicine 2012: 658-67 for a list of these trials). Adding mesenchymal stem cells from fat might improve the results of these trials.

In the heart, obstructed blood vessels can cause intense chest pain, a condition known as “angina pectoris.” EPCs have been used in clinical trials to treat patients with angina pectoris, and these trials have all been successful and have all used EPCs from bone marrow. These experiments, despite their success, have used bone marrow-based cells that were not fractionated and EPCs are less than 1% of the total number of cells. Also, the vast majority of cells introduced into heart migrate into the lungs, spleen and other organs. Also, those cells that remain tend to die off. A way to improve the survival of these implanted cells might be to combine them with mesenchymal stem cells from fat with EPCs from fat. Presently, the MyStromalCell trial is underway to test the efficacy of fat-based stem cells on the heart.

Fat provides an incredible treasure-trove of healing cells that have been demonstrated in animal experiments to relieve tissue ischemia and generate new blood vessels (for a summary of pre-clinical experiments in laboratory animals, see Qayyum AA, et al., Regen Med. 2012 May;7(3):421-8). Clinical trials with these cells are also underway. We have almost certainly only begun to tap to potential of these exciting cells that can be extracted so easily for our bodies.

Bone Marrow-Mesenchymal Stem Cells Rescue Motor Defects in Parkinson’s Macaques


A research group from Kobe, Japan at the RIKEN Center for Molecular Imaging Science and collaborators from Osaka, Kyoto, and Tokyo have successfully differentiated bone marrow mesenchymal stem cells (MSCs) into dopamine-making neurons (the kind that die off during Parkinson’s disease), and transplanted them into macaques (a type of monkey shown below) that have Parkinson’s disease. The implanted cells relieved the motor symptoms of Parkinson’s disease. This is a remarkable proof-of-priniciple publication.

Macaque

Parkinson’s disease causes a variety of motor (motor simply means associated with voluntary movement) problems. Parkinson’s disease patients have tremors, rigidity, slowness of movement, and difficulty walking. These symptoms result from the death of neurons in the midbrain that make a neurotransmitter called dopamine. Dopamine-making neurons in the midbrain are connected to regions in the cerebral cortex that help coordinate voluntary movement. Without these dopamine-making neurons, voluntary movement suffers and the characteristic symptoms of Parkinson’s disease ensue.

Several experiments have shown that replacing the dead dopamine-making neurons with manufactured neurons is feasible, but finding the right stem cell to do this has been laborious. In this new publication, a collaborative research team from Japan, led by Takuya Hayashi at the RIKEN center for Molecular Imaging Science in Kobe used a very versatile stem cell from bone marrow called the mesenchymal stem cell (also known as a stromal stem cell) for this experiment. MSCs, particularly those from bone marrow, have been used in many different regenerative medical experiments and clinical trials. However, the ability of MSCs to form neurons remains rather controversial. Even though researchers could get MSCs to form cells that looked like neurons in culture, several labs have presented observations that challenge this notion. Nevertheless, several groups have used genetic engineering techniques to place specific genes into MSCs, and these introduced genes do push MSCs to become not only neurons, but dopamine-making neurons (for papers, see Dezawa M, et al. J Clin Invest. 2004 113(12):1701–10, and Nagane K, et al., Tissue Eng Part A. 2009;15(7):1655–65).

Once it was confirmed that Hayashi and his co-workers had indeed made dopamine-making neurons from the MSCs, they were surgically transplanted into the brains of macaques that had been given a drug-induced form of Parkinson’s disease. Those animals that received the dopamine-making neurons made from bone marrow MSCs showed significant improvement in motor defects.

Did the cells integrate into the brain? Clearly they did. PET scans of the animal’s brains showed that the implanted cells were metabolically active and making dopamine. Further postmortem examination of the macaque brains confirmed that the implanted cells were still in the brains after seven months. Also, the PET scans and postmortem examination also confirmed that none of the implanted animals had any tumors or showed changes in blood chemistry. Thus the implanted cells improved symptoms, integrated into the brain. and did not produce any significant side effects or tumors.

This paper nicely illustrates that it is entirely possible to treat a patient’s Parkinson’s disease with cells from their own bone marrow in a manner that is safe and relatively effective.