Vascular Progenitors Made from Induced Pluripotent Stem Cells Repair Blood Vessels in the Eye Regardless of the Site of Injection


Johns Hopkins University medical researchers have reported the derivation of human induced-pluripotent stem cells (iPSCs) that can repair damaged retinal vascular tissue in mice. These stem cells, which were derived from human umbilical cord-blood cells and reprogrammed into an embryonic-like state, were derived without the conventional use of viruses, which can damage genes and initiate cancers. This safer method of growing the cells has drawn increased support among scientists, they say, and paves the way for a stem cell bank of cord-blood derived iPSCs to advance regenerative medical research.

In a report published Jan. 20 in the journal Circulation, Johns Hopkins University stem cell biologist Elias Zambidis and his colleagues described laboratory experiments with these non-viral, human retinal iPSCs, that were created generated using the virus-free method Zambidis first reported in 2011.

“We began with stem cells taken from cord-blood, which have fewer acquired mutations and little, if any, epigenetic memory, which cells accumulate as time goes on,” says Zambidis, associate professor of oncology and pediatrics at the Johns Hopkins Institute for Cell Engineering and the Kimmel Cancer Center. The scientists converted these cells to a status last experienced when they were part of six-day-old embryos.

Instead of using viruses to deliver a gene package to the cells to turn on processes that convert the cells back to stem cell states, Zambidis and his team used plasmids, which are rings of DNA that replicate briefly inside cells and then are degraded and disappear.

Next, the scientists identified and isolated high-quality, multipotent, vascular stem cells that resulted from the differentiation of these iPSC that can differentiate into the types of blood vessel-rich tissues that can repair retinas and other human tissues as well. They identified these cells by looking for cell surface proteins called CD31 and CD146. Zambidis says that they were able to create twice as many well-functioning vascular stem cells as compared with iPSCs made with other methods, and, “more importantly these cells engrafted and integrated into functioning blood vessels in damaged mouse retina.”

Working with Gerard Lutty, Ph.D., and his team at Johns Hopkins’ Wilmer Eye Institute, Zambidis’ team injected these newly iPSC-derived vascular progenitors into mice with damaged retinas (the light-sensitive part of the eyeball). The cells were injected into the eye, the sinus cavity near the eye or into a tail vein. When Zamdibis and his colleagues took images of the mouse retinas, they found that the iPSC-derived vascular progenitors, regardless of injection location, engrafted and repaired blood vessel structures in the retina.

“The blood vessels enlarged like a balloon in each of the locations where the iPSCs engrafted,” says Zambidis. Their vascular progenitors made from cord blood-derived iPSCs compared very well with the ability of vascular progenitors derived from fibroblast-derived iPSCs to repair retinal damage.

Zambidis says that he has plans to conduct additional experiments in diabetic rats, whose conditions more closely resemble human vascular damage to the retina than the mouse model used for the current study, he says.

With mounting requests from other laboratories, Zambidis says he frequently shares his cord blood-derived iPSC with other scientists. “The popular belief that iPSCs therapies need to be specific to individual patients may not be the case,” says Zambidis. He points to recent success of partially matched bone marrow transplants in humans, shown to be as effective as fully matched transplants.

“Support is growing for building a large bank of iPSCs that scientists around the world can access,” says Zambidis, although large resources and intense quality-control would be needed for such a feat. However, Japanese scientists led by stem-cell pioneer Shinya Yamanaka are doing exactly that, he says, creating a bank of stem cells derived from cord-blood samples from Japanese blood banks.

Japanese first Ever Induced Pluripotent Stem Cell Clinical Trial Given the Green Light


The first clinical trial that utilizes induced pluripotent stem cells has been given a green light. For this clinical trial six patients who suffer from age-related macular degeneration will donate skin biopsies and the cells from these skin biopsies will be used to generate induced pluripotent stem (iPS) cells in the laboratory. After those iPS cell lines are screened for safety (normal numbers of chromosomes, no mutations in critical genes, etc.), they will be differentiated into retinal cells. The retinal cells will be transplanted into the retinas of these six patients.

This clinical trial was approved by Japan Health Minister Norihisa Tamura and it will be next summer by Masayo Takahashi. Dr. Takahashi is a retinal regeneration expert and a colleague of the man who first developed iPS cells, Shinya Yamanaka. Yamanaka won the Nobel Prize for his discovery of iPSCs last year. In fact, this clinical trial epitomizes, in the eyes of many, the determination of Japanese scientists and politicians to dominate the iPS cell field. This national ambition kicked into high gear after Yamanaka shared the Nobel Prize for Physiology or Medicine last October for his iPS cell work.

Norhisa Tamura, Japanese Minister of Health
Norihisa Tamura, Japanese Minister of Health
Masayo Takahashi, MD, PhD, Riken Center for Developmental Biology.
Masayo Takahashi, MD, PhD, Riken Center for Developmental Biology.

“If things continue this way, this will be the first in-clinic study in iPS cell technology,” says Doug Sipp of the Riken Center for Developmental Biology (CDB). The CDB, Takahashi’s institute, will co-run the trial with Kobe’s Institute for Biomedical Research and Innovation. “It’s exciting.”

Sipp, however, also noted that this move has not surprised anyone in Japan, since the Japanese stem cell community has heavily invested in iPS cells. Nevertheless, since Takahashi yet to formally publish the details of her trial, some have questioned whether she is actually ready to move forward. IPS cells are viewed as the perfect compromise for regenerative medicine. They are adult, and therefore do not require the destruction of human embryos for their establishment, and they are also pluripotent like an embryonic cell, which makes them relatively powerful sources for regenerative medicine.

Critics, however, warn that iPS cells were only discovered in 2007. To date, they remain difficult to create and culture and they can become tumorous in many hands. However, many labs have a great deal of expertise and skill when it comes to handling and deriving iPS cells. These labs derive and culture iPS cells routinely. In fact, Sipp notes that Riken’s CDB alone has produced world-class work with all kinds of stem cells, including embryonic stem (ES) cells, which are the models for iPS cells.

Additionally, Sipp and others point out that a scientist who has collaborated with Takahashi in the past, Riken’s Yoshiki Sasai, is doing groundbreaking work with ES cells and the eye. The British journal Nature has called Sasai “The Brainmaker,” and has said that his research is “wowing” the world.

The Japanese government has also soundly funded Takahashi’s trail. The health ministry’s recent stimulus plan set aside more money for stem cells (in particular iPS cells) than anything else. According to the journal Nature, the Japanese government sequestered 21.4 billion yen ($215 million) for stem cell research. Of this pot of money, the health ministry provided 700 million yen ($7 million) for a cell-processing center to support Takahashi before her trial was even approved. Two centers devoted to iPS cells are slated to be built with 2.2 billion yen ($22 million). The AFP reports the prime minister has set aside a breathtaking $1.18 billion, for iPS-cell work. Yamanaka has told Nature that the Japanese government seems to be “telling us to rush iPS cell-related technologies to patients as quickly as possible.”

Robert Lanza, CSO of Advanced Cell Technology, might once have been the logical bet to be first to the clinic with iPS cells. Unlike Takahashi, he has three ES cell trials under his belt, and has started talks with the FDA about transplanting iPS cell-derived platelets, but his iPS proposal is taking longer. Lanza bitterly noted, not without justification, “We don’t have the prime minister and emperor to speed things along for us.”

Since 2007, the year that Yamanaka reported the derivation of iPS cells from adult cells, Japan has focused on iPS cells. Yamanaka showed that increasing the expression of four genes could change limited adult human cells into potent, embryonic-like cells. “At Yamanaka’s institute alone, there are at least 20 teams focusing on iPS cells now,” Sipp says. There are teams at Riken, the Universities of Tokyo and Keio, and others. “A lot is happening here.” In fact, the Center for IPS Cell Research and Application was created expressly for Yamanaka.

Takahashi has reported part of the design of her clinical trial at scientific meetings. She told the International Society for Stem Cell Research in June 2012 she had created iPS-cell derived retinal pigment epithelial (RPE) cells for transplantation. RPE cells lie behind the photoreceptors in the retina, and the photoreceptors have their ends embedded into the RPE. The RPE cells replenish and nourish the photoreceptors, and without the RPE cells, the photoreceptors die from the damage incurred by exposure to light.

Retinal Pigmented Epithelium

Death of the RPE cells cause eventual death of photoreceptors and that results in blindness. At the International Society for Stem Cell Research conference, Takahashi reported her that her iPS cell-derived RPEs possess proper structure and gene expression. They also do not produce tumors when transplanted into mice, and survive at least six months when transplanted into the retinas of monkeys. The vision of these animals, however, was not tested. She did note that some AMD patients’ sight improves when RPE cells are moved from the eye’s periphery to its center.

Retinal pigment epithelial cells derived from iPS cells.
Retinal pigment epithelial cells derived from iPS cells.

Takahashi has published many iPS and ES cell papers. These papers include two papers with Yamanaka: one on creating retinal cells from iPS cells, and one on creating safe iPS cells. However she has not published trial details, which is not required, but such a landmark trial should be transparent, as argued by many stem cell experts.

Still, according to Sipp, Takahashi has submitted a relevant paper to a top journal for review, which shows that this clinical trial is purely a determination of the safety of the procedure. Lanza has reported his trials in the journal The Lancet, and similar, but small, trials are doing well. His three ES cell trials treated Stargardt’s macular dystrophy and Age-related Macular Degeneration. Lanza’s trial, however, treated “dry” macular degeneration, while Takahashi’s trial will treat “wet” Age-related Macular Degeneration, which is good news for Takahashi.

Paul Knoepfler, a UC Davis stem cell scientist who runs a widely read blog site, has written that the ministry overseeing Takahashi’s trial will reportedly monitor some key factors: gene sequencing and tumorigenicity. But Knoepfler, like others, would like to see more details.

The Japanese Health Ministry and the US FDA recently agreed to devise a joint regulatory framework for retinal iPS cell clinical trials, which will come on line 2015. Takahashi’s trial is set for 2014.