Nanotubules Link Damaged Heart Cells With Mesenchymal Stem Cells to Both of Their Benefit


Mesenchymal stem cells are found throughout the body in bone marrow, fat, tendons, muscle, skin, umbilical cord, and many other tissues. These cells have the capacity to readily differentiate into bone, fat, and cartilage, and can also form smooth muscles under particular conditions.

Several animal studies and clinical trials have demonstrated that mesenchymal stem cells can help heal the heart after a heart attack. Mesenchymal stem cells (MSCs) tend to help the heart by secreting a variety of particular molecules that stimulate heart muscle survival, proliferation, and healing.

Given these mechanisms of healing, is there a better way to get these healing molecules to the heart muscle cells?

A research group from INSERM in Creteil, France has examined the use of tunneling nanotubes to connect MSCs with heart muscle cells. These experiments have revealed something remarkable about MSCs.

Florence Figeac and her colleagues in the laboratory of Ann-Marie Rodriguez used a culture system that grew fat-derived MSCs and with mouse heart muscle cells. They induced damage in the heart muscle cells and then used tunneling nanotubes to connect the fat-based MSCs.

They discovered two things. First of all, the MSCs secreted a variety of healing molecules regardless of their culture situation. However, when the MSCs were co-cultured with damaged heart muscle cells with tunneling nanotubes, the secretion of healing molecules increased. The tunneling nanotubes somehow passed signals from the damaged heart muscle cells to the MSCs and these signals jacked up secretion of healing molecules by the MSCs.

The authors referred to this as “crosstalk” between the fat-derived MSCs and heart muscle cells through the tunneling nanotubes and it altered the secretion of heart protective soluble factors (e.g., VEGF, HGF, SDF-1α, and MCP-3). The increased secretion of these molecules also maximized the ability of these stem cells to promote the growth and formation of new blood vessels and recruit bone marrow stem cells.

After these experiments in cell culture, Figeac and her colleagues used these cells in a living animal. They discovered that the fat-based MSCs did a better job at healing the heart if they were previously co-cultured with heart muscle cells.

Exposure of the MSCs to damaged heart muscle cells jacked up the expression of healing molecules, and therefore, these previous exposures made these MSCs better at healing hearts in comparison to naive MSCs that were not previously exposed to damaged heart muscle.

Thus, these experiments show that crosstalk between MSCs and heart muscle cells, mediated by nanotubes, can optimize heart-based stem cells therapies.

University of Utah doctor performs historic first procedure using new technique of retrograde gene therapy on a human heart


Ernie Lively moved to a scenic home in the mountains of Wasatch County to escape the hectic pace of Hollywood when he retired.

The actor, who resides in Heber City with his wife Elain has credentials that include a long list of TV and film appearances, including Passenger 57 and the Sisterhood of the Traveling Pants —the latter that he starred in with his daughter, Blake.

But retirement didn’t provide Lively with the active lifestyle he craved because of simple reality: His heart was failing.  He’d suffered a massive heart attack in 2003, which left him functioning on half a healthy heart.  As time marched on, his ejection fraction —the measurement of the percentage of blood leaving the heart each time it contracts —continued to decline.

See the rest of the article here.

A New Way to Treat Kidney Disease and Heart Failure


St. Michael’s Hospital in Toronto, Ontario is the site of new research that uses bone marrow stem cells to treat chronic kidney disease and heart failure in rats.

Darren Yuen and Richard Gilbert of St. Michael’s Hospital were the first to show in 2010 that enriched stem cells improved heart and kidney functions in rats afflicted with both diseases. Their work generated concerns about the side effects of returning such stem cells to the body.

Since 2010, Yuen and Gilbert have found that enriched bone marrow stem cells secrete stromal cell–derived factor-1α (SDF-1α), a chemokine that is made by ischemic tissue but is rapidly degraded by dipeptidyl peptidase-4 (DPP-4), in culture dishes.  Injection of SDF-1α into rats has many of the same positive effects as when the stem cells themselves are injected into rats.  Even more remarkably, if a drug that inhibits the enzyme DPP-4 is given (sitagliptin) produced many improvements as well.

“We’ve shown that we can use these ‘hormones’ to replicate the beneficial effects of the stem cells in treating animals with chronic kidney disease and heart failure,” said Yuen, who practices as a nephrologist. “In our view, this is a significant advance for stem cell therapies because it gets around having to inject stem cells.”

Yuen said that they do not yet know what kind of hormone the cells are secreting, but identifying the hormone would be the first step toward the goal of developing a synthetic drug.

Chronic kidney disease (CKD) is much more prevalent than was once believed, with recent estimates suggesting that up to five percent of the Canadian population may be affected with this condition.

The number of people with CKD and end-stage renal failure is expected to rise as the population ages and more people develop Type 2 diabetes. People with kidney disease often develop heart disease, and many of them die from heart failure rather than kidney failure.