Clincal Trial Validates Stem Cell-Based Treatments of Sickle Cell Disease in Adults

Santosh Saraf and his colleagues at the University of Illinois have used a low-dose irradiation/alemtuzumab plus stem cell transplant procedure to cure patients of sickle-cell disease. 12 adult patients have been cured of sickle-cell disease by means of a stem cell transplantation from a healthy, tissue-matched donor.

This new procedure obviates the need for chemotherapy to prepare the patient to receive transplanted cells and offers the possibility of curing tens of thousands of adults from sickle-cell disease.

Sickle cell disease is an inherited disease that primarily affects African-Americans born in the United States. The genetic lesion occurs in the beta-globin gene that causes hemoglobin molecules to assemble into filaments under low-oxygen conditions. These hemoglobin filaments deform red blood cells and cause them to plug small capillaries in tissues, causing severe pain, strokes and even death.

Fortunately, a bone marrow transplant from a healthy donor can cure sickle-cell disease, but few adults undergo such a procedure because the chemotherapeutic agents that are given to destroy the patient’s bone marrow leaves from susceptible to diseases, unable to make their own blood cells, and very weak and sick.

Fortunately, a gentler procedure that only partially ablate the patient’s bone marrow was developed at the National Institutes of Health ()NIH) in Bethesda, Maryland. Transplant physicians there have treated 30 patients, with an 87% success rate.

In the Phase I/II clinical trial at the University of Illinois, 92% of the patients treated with this gentler procedure that was developed at the NIH.

Approximately 90% of the 450 patients who received stem cells transplants for sickle-cell disease have been children. However, chemotherapy has been considered too risky for adult patients who are often weakened far more than children by it.

Adult sickle-cell patients live an average of 50 years with a combinations of blood transfusions and pain medicines to manage the pain crisis. However, their quality of life can be quite low. Now, with this chemotherapy-free procedure, adults with sickle-cell disease can be cured of their disease within one month of their transplant. They can even go back to work or school and operate in a pain-free fashion.

In the new procedure, patients receive immunosuppressive drugs just before the transplant, with a very low dose of whole body radiation. Alemtuzumab (Campath, Lemtrada) is a monoclonal antibody that binds to the CD52 glycoprotein on the surfaces of lymphocytes and elicits their destruction, but not the hematopoietic stem cells that gives rise to them.  Next, donor cells from a healthy a tissue-matched sibling or donor are transfused into the patient. Stem cells from the donor home to the bone marrow and produce healthy, new blood cells in large quantities. Patients must continue to take immunosuppressive drugs for at least a year.

In the University of Illinois trial, 13 patients between the ages of 17-40 were given transplants from the blood of a healthy, tissue-matched sibling. Donors must be tested for human leukocyte antigen (HLA) markers on the surfaces of cells. Ten different HLA markers must match between the donor and the recipient for the transplant to have the best chance of evading rejection. Physicians have transplanted two patients with good HLA matches, to their donor, but had a different blood type than the donor. In many cases, the sickle cells cannot be found in the blood after the transplant.

In all 13 patients, the transplanted cells successfully engrafted into the bone marrow of the patients, but one patient failed to follow the post-transplant therapy regimen and reverted to the original sickle-cell condition.

One year after the transplantation, the 12 successfully transplanted patients had normal hemoglobin concentrations in their blood and better cardiopulmonary function. They also reported significantly less pain and improved health and vitality,

For of the patients were able to stop post-transplantation immunotherapy, without transplant rejection or other complications.

“Adults with sickle-cell disease can be cured with chemotherapy – the main barrier that has stood in the way for so long,” said Damiano Rondelli, Professor of Medicine and Director of the Stem Cell Transplantation Program at the University of Illinois. “Our data provide more support that this therapy is safe and effective and prevents patients from living shortened lives, condemned to pain and progressive complications.”

These data were published in the journal Biology of Blood and Marrow Transplantation, 2015; DOI 10.1016/j.bbmt.2015.08.036.

Stem Cell Researchers Develop New Method to Treat Sickle Cell Disease

Stem cells researchers from the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at the University of California, Los Angeles (UCLA) have shown that a new stem cell gene therapy protocol can potentially lead to a one-time, lasting treatment for sickle-cell disease, which remains the nation’s most common inherited blood disorder.

This study was led by Dr. Donald Kohn and was published March 2 in the journal Blood. This paper details a method that repairs a mistake in the beta-globin that causes sickle-cell disease and, for the first time, shows that such a gene therapy technique can lead to the production of normal red blood cells.

People with sickle-cell disease are born with a mutation in their beta-globin gene.


Beta-globin is one of the protein chains that compose the protein hemoglobin. Hemoglobin is the protein in red blood cells that ferries oxygen from the lungs to the tissues and then returns to the lungs to load up with oxygen again and then goes back to the tissues. Red blood cells, which are made in the bone marrow, are packed from stem to stern with hemoglobin molecules, and normally are round, and slightly dished and flexible enough to squeeze through small capillary beds in tissues. The mutation in the beta-globin gene that causes sickle-cell disease, however, causes hemoglobin to form long, stiff rods of protein rather than tight, compactly packed clusters of hemoglobin. These protein rods deform the red blood cells and make them stiff, sickle-shaped, and unable to pass through tissue capillary beds.


These abnormally shaped red blood cells not only move poorly through blood vessels, but they also do not sufficiently carry oxygen to vital organs.

Sickle_cell 2

The stem cell gene therapy method described by Kohn and his colleagues corrects the mutation in the beta-globin gene in the bone marrow-based stem cells so that they produce normal, circular-shaped blood cells. The technique uses specially engineered enzymes, called zinc-finger nucleases, to eliminate the mutation and replace it with a corrected version that repairs the beta-globin mutation. Kohn’s research showed that this method has the potential to treat sickle-cell the disease if the gene therapy achieves higher levels of correction.

“This is a very exciting result,” said Dr. Kohn, professor of pediatrics and microbiology, immunology and molecular genetics. “It suggests the future direction for treating genetic diseases will be by correcting the specific mutation in a patient’s genetic code. Since sickle-cell disease was the first human genetic disease where we understood the fundamental gene defect, and since everyone with sickle-cell has the exact same mutation in the beta-globin gene, it is a great target for this gene correction method.”

Stem-Cell Gene Therapy for Sickle Cell Disease

Donald Kohn, a professor of pediatrics and microbiology, immunology and molecular genetics in the UCLA College of Letters and Science, and his colleagues, have successfully established the means to cure sickle-cell disease. This strategy uses hematopoietic (blood-producing) stem cells from the bone marrow of patients with sickle-cell disease in order to treat the disease itself.

This approach provides a revolutionary alternative to current treatments, since it creates self-renewing, normal blood cells by inserting a gene that abrogates the sickling properties into hematopoietic stem cells. With this technique, there is no need to identify a matched donor, and therefore, patients avoid the risk of their bodies rejecting donor cells.

During the clinical trial, the anti-sickling hematopoietic stem cells will be transplanted back into patients’ bone marrow to increase the population of “corrected” cells that make red blood cells that don’t sickle. Kohn will hopefully begin enrolling patients in the trial within three months. The first subject will be enrolled and observed for safety for six months. The second subject will then be enrolled and observed for safety for three months. If evaluations show that no problems have arisen, the study will continue with two more subjects and another evaluation, until a total of six subjects have been enrolled.

Sickle cell disease, which affects more than 90,000 individuals in the U.S., is seen primarily in people of sub-Saharan African descent. It is caused by an inherited mutation in the beta-globin gene that transforms normal-shaped red blood cells, which are round and pliable, into rigid, sickle-shaped cells. Normal red blood cells are able to pass easily through the tiniest blood vessels (capillaries) and carry oxygen to organs like the lungs, liver and kidneys. However, sickled cells get stuck in the capillaries, depriving the organs of oxygen, which can lead to organ dysfunction and failure.

Current treatments include transplanting patients with hematopoietic stem cells from a donor. This is a potential cure for the disease, but due to the serious risks of rejection, only a small number of patients have undergone this procedure, and it is usually restricted to children with severe symptoms.

“Patients with sickle-cell disease have had few therapeutic options,” Kohn said. “With this award, we will initiate a clinical trial that we hope will become a treatment for patients with this devastating disease.”

Finding for this work comes from new grants to researchers at UCLA’s Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, which total nearly $21 million.  These grants were announced Dec. 12 at a meeting of the California Institute of Regenerative Medicine (CIRM) Citizen’s Oversight Committee.  They are apart of the state agency’s Disease Team Therapy Development III initiative.

Stem Cell Gene Therapy for Sickle Cell Disease Moves Toward Clinical Trials

UCLA stem cell researchers and “gene jockeys” have successfully proven the efficacy of using genetically engineered hematopoietic (blood cell-making) stem cells from a patient’s own bone marrow to treat sickle-cell disease (SCD).

In a study led by Donald Kohn, professor of pediatrics and microbiology at the UCLA Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, an “anti-sickling” gene was introduced into the hematopoietic stem cells (HSCs) from patients with SCD. Because the HSCs divide continuously throughout the life of the individual, all the blood cells they make will possess the anti-sickling gene and will therefore no sickle. This breakthrough gene therapy technique is scheduled to begin clinical trials by early 2014.

SCD results from a specific mutation in the beta-globin gene. Beta-globin is one of the two proteins that makes the multisubunit protein hemoglobin. Hemoglobin is a four-subunit protein that ferries oxygen from the lungs to the tissues and carbon dioxide from the tissues to the lungs. It is tightly packed into each red blood cell.

The structure of hemoglobin, each subunit is in a different color.
The structure of hemoglobin, each subunit is in a different color.

Hemoglobin has a very high affinity for oxygen when oxygen concentrations are high, but a low affinity for oxygen when oxygen concentrations are low. Therefore, hemoglobin does a very good job of binding oxygen when it is in the lungs, where oxygen is plentiful, and a very good job of releasing oxygen in the tissues, where oxygen is not nearly as plentiful. This adaptive ability displayed by hemoglobin is the result of cooperativity between the four polypeptide chains that compose hemoglobin. Two of these polypeptide chains are alpha-globin proteins and the other two a beta globin proteins. Hemoglobin acts as though it is an alpha-beta dimer, or as though it is composed of two copies of an alpha-globin.beta-globin pair. The interactions between these polypeptide chains and the movement of the hemoglobin subunits relative to each other creates the biochemical properties of hemoglobin that are so remarkable.

A mutation in the beta-globin gene that substitutes a valine residue where there should be a glutamic acid residue (position number 6), creates a surface on the outside of the beta-globin subunit that does not like water, and when oxygen concentrations drops, the mutant hemoglobin molecule changes shape and this new water-hating surface becomes a site for protein polymerization.

Sickle cell hemoglobin

The mutant hemoglobin molecules for long, stiff chains that deform the red blood cells into a quarter moon-shaped structure that clogs capillaries.

Sickle cell RBCs


This new therapy seeks to correct the genetic mutation by inserting into the genome of the HSC that makes the abnormal red blood cells a gene for beta-globin that encodes a normal version of beta globin rather than a version of it that causes sickle-cell disease.  By introducing those engineered HSCs back into the bone marrow of the SCD patient, the engineered HSCs will make normal red blood cells that do not undergo sickling under conditions of low oxygen concentration.

Dr. Kohn noted that the results from his research group “demonstrate that our technique of lentiviral transduction is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globnin gene in human SCD bone marrow progenitor cells, which improved the physiologic parameters of the resulting red blood cells.” Dr. Kohn’s statement may lead the reader to believe that this was done in a human patient, but that is not the case.  All this work was done in culture and in laboratory animals.

Kohn and his co-workers showed that in laboratory experiments, genetically engineered HSCs from SCD patients produced new non-sickled blood cells at a rate that would effectively allow SCD patients to show significant clinical improvement.  These new red blood cells also survived longer than those made by the nonengineered SCD HSCs.  The in vitro success of this technique has convinced the US Food and Drug Administration to grant Kohn the right to conduct clinical trials in SCD patients by early next year.

SCD affects more than 90,000 patients in the US, but it most affects people of sub-saharan African descent.  As stated before, the mutation that causes SCD produces red blood cells that are stiff, long, and get stuck in the tiny blood vessels known as capillaries that feed organs.  SCD causes multi-organ dysfunction and failure and can lead to death.


Treatment of SCD include bone marrow transplants, but immunological rejection of such transplants remains a perennial problem.   The success rate of bone marrow transplants is low and it is typically restricted to those patients with very severe disease who are on the verge of dying.

If Kohn’s clinical trials are successful, this stem cell-based treatment will hopefully become the gold standard for treatment of patients with SCD.  One potential problem with this technique is the use of lentiviral vectors to introduce a new gene into the HSCs.  Because lentiviruses are retroviruses, they insert their DNA into the genome of the host cells.  Such insertions can produce mutations, and it will be incumbent on Kohn and his colleagues to carefully screen each transformed HSC line to ensure that the insertion is not problematic and that the transformed cells are not sick or potentially tumorous.  However, such a vector is necessary in order to ensure permanent residence of the newly-introduced gene.

Even with these caveats, Kohn’s SCD treatment should go forward, and we wish all the best to Dr. Kohn, his team, and to the patients treated in this trial.