Stress-Resistant Stem Cells From Fat


During liposuction patients lose a fat cells, fat-based mesenchymal stem cells, and now, according to new results from UCLA scientists, stress-enduring stem cells.

This new stem cell population has been called a Multi-lineage Stress-Enduring Adipose Tissue or Muse-AT stem cells. UCLA scientists found Muse-AT stem cells by accident when a particular machine in the laboratory malfunctioned, killing all the cells found in cells from human liposuction, with the exception on the Muse-AT stem cells.

Gregorio Chazenbalk from the UCLA Department of Obstetrics and Gynecology and his research team discovered, after further tests on Muse-AT stem cells, that they not only survive stress, but might be activated by it.

The removal of Muse-AT stem cells from the human body by means of liposuction revealed cells that express several embryonic stem cell-specific proteins (SSEA3, TR-1-60, Oct3/4, Nanog and Sox2). Furthermore, Muse-AT stem cells were able to differentiate into muscle, bone, fat, heart muscle, liver, and neuronal cells. Finally, when Chazenbalk and his group examined the properties of Muse-AT stem cells, they discovered that these stem cells could repair and regenerate tissues when transplanted back into the body after having been exposed to cellular stress.

Muse-ATs express pluripotent stem cell markers. Immunofluorescence microscopy demonstrates that Muse-AT aggregates, along with individual Muse-AT cells, express characteristic pluripotent stem cell markers, including SSEA3, Oct3/4, Nanog, Sox2, and TRA1-60. Comparatively, ASCs (right panel) derived from the same lipoaspirate under standard conditions (see above, [16] were negative for these pluripotent stem cell markers. Nuclei were stained with DAPI (blue). Original magnification, 600 X. doi:10.1371/journal.pone.0064752.g002
Muse-ATs express pluripotent stem cell markers.
Immunofluorescence microscopy demonstrates that Muse-AT aggregates, along with individual Muse-AT cells, express characteristic pluripotent stem cell markers, including SSEA3, Oct3/4, Nanog, Sox2, and TRA1-60. Comparatively, ASCs (right panel) derived from the same lipoaspirate under standard conditions (see above, [16] were negative for these pluripotent stem cell markers. Nuclei were stained with DAPI (blue). Original magnification, 600 X.
doi:10.1371/journal.pone.0064752.g002
“This population of cells lies dormant in the fat tissue until it is subjected to very harsh conditions. These cells can survive in conditions in which usually cancer cells can survive. Upon further investigation and clinical trials, these cells could prove a revolutionary treatment option for numerous diseases, including heart disease, stroke and for tissue damage and neural regeneration,” said Chazenbalk.

Purifying and isolating Muse-AT stem cells does not require the use of a cell sorter or other specialized, high-tech machinery. Muse-AT stem cell can grow in liquid suspension, where they grow as small spheres or as adherent cells that pile on top of each other to form aggregates, which is rather similar to embryonic stem cells and the embryoid bodies that they form.

Isolation and morphologic characterization of Muse-ATs. (A) Schematic of Muse-AT isolation and activation from their quiescent state by exposure to cellular stress. Muse-AT cells were obtained after 16 hours, with incubation with collagenase in DMEM medium without FCS at 4°C under very low O2 (See Methods). (B) FACS analysis demonstrates that 90% of isolated cells are both SSEA3 and CD105 positive. (C) Muse-AT cells can grow in suspension, forming spheres or cell clusters as well as individual cells (see red arrows) or (D) Muse-AT cells can adhere to the dish and form cell aggregates. Under both conditions, individual Muse-AT cells reached a diameter of approximately 10µm and cell clusters reached a diameter of up to 50µm, correlating to stem cell proliferative size capacity. doi:10.1371/journal.pone.0064752.g001
Isolation and morphologic characterization of Muse-ATs.
(A) Schematic of Muse-AT isolation and activation from their quiescent state by exposure to cellular stress. Muse-AT cells were obtained after 16 hours, with incubation with collagenase in DMEM medium without FCS at 4°C under very low O2 (See Methods). (B) FACS analysis demonstrates that 90% of isolated cells are both SSEA3 and CD105 positive. (C) Muse-AT cells can grow in suspension, forming spheres or cell clusters as well as individual cells (see red arrows) or (D) Muse-AT cells can adhere to the dish and form cell aggregates. Under both conditions, individual Muse-AT cells reached a diameter of approximately 10µm and cell clusters reached a diameter of up to 50µm, correlating to stem cell proliferative size capacity.
doi:10.1371/journal.pone.0064752.g001

We have been able to isolate these cells using a simple and efficient method that takes about six hours from the time the fat tissue is harvested,” said Chazenbalk. “This research offers a new and exciting source of fat stem cells with pluripotent characteristics, as well as a new method for quickly isolating them. These cells also appear to be more primitive than the average fat stem cells, making them potentially superior sources for regenerative medicine.”

Embryonic stem cells and induced pluripotent stem cells are the two main sources of pluripotent stem cells. However, both of these stem cells have an uncontrolled capacity for differentiation and proliferation, which leads to the formation of undesirable teratomas, which are benign tumors that can become teratocarcinomas, which are malignant tumors. According to Chazenbalk, little progress has been made in resolving this defect (I think he overstates this).

Muse-AT stem cells were discovered by a research group at Tokohu University in Japan and were isolated from skin and bone marrow rather than fat (see Tsuchiyama K, et al., J Invest Dermatol. 2013 Apr 5. doi: 10.1038/jid.2013.172). The Japanese group showed that Muse-AT stem cells do not form tumors in laboratory animals. The UCLA group was also unable to get Muse-AT stem cells to form tumors in laboratory animals, but more work is necessary to firmly establish that these neither form tumors nor enhance the formation of other tumors already present in the body.

Chazenbalk also thought that Muse-AT stem cells could provide an excellent model system for studying the effects of cellular stress and how cancer cells survive and withstand high levels of cellular stress.

Chazenbalk is understandable excited about his work, but other stem cells scientists remain skeptical that this stem cells population has the plasticity reported or that these cells are as easily isolated as Chazenbalk says.  For a more skeptical take on this paper, see here.

Induced Pluripotent Stem Cells


Embryonic stem cells might provide the means to heal a variety of physical ailments. However the problem with embryonic stem cells is not necessarily in their use, but in their derivation. In order to make embryonic stem cell lines, human embryos are destroyed.

The following video shows Alice Chen from Doug Melton’s laboratory at Harvard University destroying embryos to make embryonic stem cells:  http://www.jove.com/index/details.stp?ID=574.

Now that federal funding is available to not only work with existing embryonic stem cell lines but to MAKE new lines, there is nothing to stop researchers from thawing and (I’m sorry to be so blunt) killing human embryos. Can we have our “cake and eat it too?” Can we have the benefits of embryonic stem cells and not destroy embryos? Perhaps we can.

In 2001, Masako Tada reported the fusion of embryonic stem cells with a connective tissue cell called a fibroblast. This fusion reprograms the fibroblasts so that they behave like embryonic stem cells (Current Biology 11, no. 9 (2001): 1553–8). This suggests that something within embryonic stem cells can redirect the machinery of somatic cells to become more like that of embryonic stem cells. In 2006 Kazutoshi Takahashi and Shinya Yamanaka were able to generate embryonic stem cell lines by introducing four specific genes into mouse skin fibroblasts. These “induced pluripotent stem cells” (iPSCs) shared many of the properties of embryonic stem cells derived from embryos, but when transplanted into mouse embryos, they were not able to participate in the formation of an adult mouse (Cell 126, no. 4 (2006): 663–76). This experiment showed that it is possible to convert adult cells into something that resembles an embryonic stem cell. Could we push adult cells further? In 2007, three different research groups used retroviruses to transfer four different genes (Oct3/4, Sox2, c-Myc and Klf4) into mouse skin fibroblasts and completely transformed them into cells that had all the features and behaviors of embryonic stem cells (Cell Stem Cell 1, no. 1 (2007): 55–70; Nature 448 (2007): 313–7; Nature 448 (2007): 318–24.).

These experiments drew a great deal of excitement, but there were several safety concerns that had to be addressed before iPSCs could be used in human clinical trials.  Scientists used engineered retroviruses to introduce genes into adult cells in order to reprogram them into iPSCs (Current Topics in Microbiology and Immunology 261 (2002): 31-52).  Retroviruses insert a DNA copy of their genome into the chromosomes of the host cell they have infected.  If that viral DNA inserts into a gene, it can disrupt it and cause a mutation.  This can have dire consequences (see Folia Biologia 46 (2000): 226-32; Science 302 (2003): 415-9).  Fortunately this is not an intractable problem.  The conversion of adult cells into iPSCs only requires the transient expression of the inserted genes.  Secondly, scientists have created retroviruses that self-inactivate after their initial insertion (Journal of Virology 72 (1998): 8150-7; Virology 261, (1999).  One laboratory has also discovered a way to make iPSCs with a virus that does not insert into host cell chromosomes (Science 322 (2008): 945-9).  Other researchers have designed ingenious ways to move the necessary genes into adult cells without using viruses (Science 322 (2008): 949-53).  Both procedures avoid the dangers associated with the use of retroviruses.

A second concern involves the genes used to convert re-program adult cells into iPSCs.  One of these genes, c-Myc, is found in multiple copies in human and animal tumors.  Thus increasing the number of copies of the c-Myc gene might predispose such cells to form tumors (Recent Patents on Anticancer Drug Discovery 1 (2006): 305-26; Seminars in Cancer Biology 16 (2006): 318-30). Indeed, the increased ability of iPSCs made by Yamanaka to cause tumors in laboratory animals underscore this concern (Hepatology 46, no 3 (2009): 1049-9).  Several groups, however, have succeeded in making iPSCs from adult cells without the use of the c-Myc gene (Science 321 (2008): 699­-702; Nature Biotechnology 26 (2008): 101-6; Science 318 (2007): 1917–20), although the conversion is much less efficient.  Additionally, several groups have established that particular chemicals, in combination with the addition of a subset of the four genes originally used, can effectively transform particular cells into iPSCs (Cell Stem Cell 2 (2008): 525-8).   Thus the larger safety concerns facing iPSCs have been largely solved.

Finally, patient-specific iPSCs have been made in several labs, even though they have not been used in clinical trials to date.  Here is a short list of some of the diseases for which patient-specific iPSCs have been made:

Amylotrophic Lateral SclerosisScience 321 (2008): 1218­21.

Spinal Muscular AtrophyNature 457 (2009): 277­81.

Parkinson’ DiseaseCell 136, no. 5 (2009): 964­77.

Adenosine deaminase deficiency-related severe combined immunodeficiency – Cell 134, no. 5 (2008): 877­86.

Shwachman-Bodian-Diamond syndrome – Cell 134, no. 5 (2008): 877­86.

Gaucher disease – Cell 134, no. 5 (2008): 877­86.

Duchenne and Becker muscular dystrophy – Cell 134, no. 5 (2008): 877­86.

Huntington disease – Cell 134, no. 5 (2008): 877­86.

Juvenile-onset type 1 diabetes mellitus – Cell 134, no. 5 (2008): 877­86.

Down syndrome – Cell 134, no. 5 (2008): 877­86.

Lesch-Nyhan syndromeCell 134, no. 5 (2008): 877­86.

Thus iPSCs represent an exciting, embryo-free alternative to embryonic stem cells that provide essentially all of the opportunities for regenerative medicine without destroying embryos.