Stem Cell Therapy Following Meniscus Knee Surgery Reduces Pain and Regenerates Meniscus

According to a new study published in the January issue of the Journal of Bone and Joint Surgery (JBJS), a single stem cell injection after meniscus knee surgery can provide pain relief and aid in meniscus regrowth.

In the US alone, over one million knee arthroscopy procedures are performed each year. These surgeries are usually prescribed to treat tears to the wedge-shaped piece of cartilage on either side of the knee called the “meniscus.” The meniscus acts as an important shock absorber between the thighbone (femur) and the shinbone (tibia) at the knee-joint.


This novel study, “Adult Human Mesenchymal Stem Cells (MSC) Delivered via Intra-Articular Injection to the Knee, Following Partial Medial Meniscectomy,” examined 55 patients who had undergone a surgical removal or all or part of a torn meniscus (known as a partial medial meniscectomy). Each patient was randomly assigned to one of three treatment groups: Groups A, B and C. The 18 patients in group A received a “low-dose” injection of 50 million stem cells within seven to 10 days after their meniscus surgery. Another 18 patients in group B received a higher dose of 150 million stem cells seven to ten days after their knee surgery. The controls group consisted of 19 patients who received injections of sodium hyaluronate only (no stem cells). All patients were evaluated to determine the safety of the procedure, the degree of meniscus regeneration (i.e. with MRI and X-ray images), the overall condition of the knee-joint, and the clinical outcomes through two years. Most of the patients enrolled in this study had some arthritis, but patients with severe (level three or four) arthritis, were excluded from the study.

Most of the patients who had received stem cell treatments reported a significant reduction in pain. 24 percent of the patients in one MSC group and 6 percent of the other showed at least a 15 percent increase in meniscal volume at one year. Unfortunately, there was no additional increase in meniscal volume at year two.

“The results demonstrated that high doses of mesenchymal stem cells can be safely delivered in a concentrated manner to a knee-joint without abnormal tissue formation,” said lead study author C. Thomas Vangsness, Jr., MD. “No one has ever done that before.” In addition, “the patients with arthritis got strong improvement in pain” and some experienced meniscal regrowth.

The key findings of this study are that there no abnormal (ectopic) tissue formation or “clinically important” safety issues identified. Also, 24 percent of the patients in the low-dose injection group (A) and six percent of the high-dose injection group (B) at one year showed “significantly increased meniscal volume,” as determined by an MRI, and this increase did not continue into the second year, but remained stable (should future studies try a second injection of MSCs?). Third, none of the patients in the control group (non-MSC group) showed significant meniscus regrowth. Finally, patients with osteoarthritis experienced a reduction in pain in the stem cell treatment groups, but there was no reduction in pain in the control (non-MSC group).

“The results of this study suggest that mesenchymal stem cells have the potential to improve the overall condition of the knee joint,” said Dr. Vangsness. “I am very excited and encouraged” by the results. With the success of a single injection, “it begs the question: What if we give a series of injections?”

A Patient’s Own Bone Marrow Stem Cells Defeat Drug-Resistant Tuberculosis

People infected with multidrug-resistant forms of tuberculosis could, potentially, be treated with stem cells from their own bone marrow. Even though this treatment is in the early stage of its development, the results of an early-stage trial of the technique show immense promise.

British and Swedish scientists have tested this procedure, which could introduce a new treatment strategy for the estimated 450,000 people worldwide who have multi drug-resistant (MDR) or extensively drug-resistant (XDR) TB.

This study, which was published in the medical journal, The Lancet, showed that over half of 30 drug-resistant TB patients treated with a transfusion of their own bone marrow stem cells were cured of the disease after six months.

“The results … show that the current challenges and difficulties of treating MDR-TB are not insurmountable, and they bring a unique opportunity with a fresh solution to treat hundreds of thousands of people who die unnecessarily,” said TB expert Alimuddin Zumla at University College London, who co-led the study.

TB initially infects the lungs but can rapidly spread from one person to another through coughing and sneezing. Despite its modern-day resurgence, TB is often regarded as a disease of the past. However, recently, drug-resistant strains of Mycobacterium tuberculosis, the microorganism that causes TB, have spread globally, rendering standard anti-TB drug treatments obsolete.

The World Health Organisation (WHO) estimates that in Eastern Europe, Asia and South Africa 450,000 people have MDR-TB, and close to half of these cases will fail to respond to existing treatments.

Mycobacterium tuberculosis, otherwise known as the “tubercle bacillus, trigger a characteristic inflammatory response (granulomatous response) in the surrounding lung tissue that elicits tissue damage (caseation necrosis).

Bone-marrow stem cells are known to migrate to areas of lung injury and inflammation. Upon arrival, they initiate the repair of damaged tissues. Since bone marrow stem cells also they also modify the body’s immune response, they can augment the clearance of tubercle bacilli from the body. Therefore, Zumla and his colleague, Markus Maeurer from Stockholm’s Karolinska University Hospital, wanted to test bone marrow stem cell infusions in patients with MDR-TB.

In a phase 1 trial, 30 patients with either MDR or XDR TB aged between 21 and 65 who were receiving standard TB antibiotic treatment were also given an infusion of around 10 million of their own bone marrow-derived stem cells.

The cells were obtained from the patient’s own bone marrow by means of a bone marrow aspiration, and then grown into large numbers in the laboratory before being re-transfused into the same patient.

During six months of follow-up, Zumla and his team found that the infusion treatment was generally safe and well tolerated, and no serious side effects were observed. The most common non-serious side effects were high cholesterol levels, nausea, low white blood cell counts and diarrhea.

Although a phase 1 trial is primarily designed only to test a treatment’s safety, the scientists said further analyses of the results showed that 16 patients treated with stem cells were deemed cured at 18 months compared with only five of 30 TB patients not treated with their own stem cells.

Maeurer stressed that further trials with more patients and longer follow-up were needed to better establish how safe and effective the stem cell treatment was.

But if future tests were successful, he said, this could become a viable extra new treatment for patients with MDR-TB who do not respond to conventional drug treatment or for those patients with severe lung damage.