New Analysis of Stem Cell Treatments for Spinal Cord Injury in Laboratory Animals


A host of preclinical studies have examined the ability of stem cells to improve the condition of laboratory animals that have suffered a spinal cord injury. While these studies vary in their size, design, and quality, there has been little cumulative analysis of the data generated by these studies.

Fortunately, there is a powerful analytical tool that can examine data from many studies and this type of analysis is called a “meta-analysis.” Meta-analyses use sophisticated statistical packages to systematically reassess a compilation of the data contained within these papers. Meta-analyses are exhausting, but potentially very useful. Such a meta-analysis is also very important because it provides researchers with an indication of what problems must be worked out before these treatments advance to human clinical trials and what aspects of the treatment work better than others.

A recent meta-analysis of stem cell therapy on animal models of spinal cord injury has been published by Ana Antonic, MSc, David Howells, Ph.D., and colleagues from the Florey Institute and the University of Melbourne, Australia, along with Malcolm MacLeod and colleagues from the University of Edinburgh, UK in the open access journal PLOS Biology.

The goal of regenerative spinal cord treatments is to use stem cells to replace dead cells within damaged areas of the spinal cord. Such treatments would be given to spinal cord injury patients in the hope of improving the ability to move and to feel below the site of the injury. Many experiments that utilize animal models of spinal cord injury have used stem cells to treat laboratory animals that have suffered spinal cord injury, but, unfortunately, these studies are limited in scale by size (as a result of financial considerations), practical and ethical considerations. Such limitations hamper each individual study’s statistical power to detect the true effects of the stem cell implantation. Also, these studies use different types of stem cells in their treatment scenarios, inject those cells differently induce spinal cord injuries differently, and test their animals for functional recovery differently.

To assess these studies, this new paper examined 156 published studies, all of which tested the effects of stem cell treatments on about 6,000 spinal cord-injured animals.

Overall, they found that stem cell treatment results in an average improvement of about 25 percent over the post-injury performance in both sensory (ability to feel) and motor (ability to move) outcomes. Unfortunately, the variation from one animal to another varied widely.

For sensory outcomes the degree of improvement tended to increase with the number of cells implanted. Such dose-responsive results tend to indicate that the improvements are actually due to the stem cells, and therefore, this stem cell-mediated effect represents a genuine biological effect.

The authors also measured the effects of bias. Simply put, if the experimenters knew which animals were treated and which were untreated, then they might be more likely to report improvements in the stem cell-treated animals. They also examined the way that the stem cells were cultured, the way that the spinal injury was generated and the way that outcomes were measured. In each case, important lessons were learned that should help inform and refine the design of future animal studies.

The meta-analysis also revealed some surprises that should provoke further investigations. For example, there was little evidence that female animals showed any beneficial sensory effects as a result of stem cell treatments. Also, the efficacy of the stem cell treatment seemed to not depend on whether immunosuppressive drugs were administered or not.

The authors conclude, “Extensive recent preclinical literature suggests that stem cell-based therapies may offer promise; however the impact of compromised internal validity and publication bias means that efficacy is likely to be somewhat lower than reported here.”

Even though human clinical trials are in the works, such trials will continue to be informed by preclinical studies on laboratory animals.

Stem Cell Treatments to Improve Blood Flow in Angina Patients


Angina pectoris is defined as chest pain or discomfort that results from poor blood flow through the blood vessels in the heart and is usually activated by activity or stress.

In Los Angeles, California, physicians have initiated a double-blind, multicenter Phase III clinical trial that uses a patient’s own blood-derived stem cells to restore circulation to the heart of angina patients.

This procedure utilizes state-of-the-art imaging technology to map the heart and generate a three-dimensional image of the heart. These sophisticated images will guide the physicians as they inject stem cells into targeted sites in the heart.

This is a double-blinded study, which means that neither the patients nor the researcher will know who is receiving stem-cell injections and who is receiving the placebo.

The institution at which this study is being conducted, University of Los Angeles (UCLA), is attempting to establish evidence for a stem cell treatment that might be approved by the US Food and Drug Administration for patients with refractory angina. The subjects in this study had received the standard types of care but did not receive relief. Therefore by enrolling in this trial, these patients had nothing to lose.

Dr. Ali Nasir, assistant professor of cardiology at the David Geffen School of Medicine and co-principal investigator of this study, said: “We’re hoping to offer patients who have no other options a treatment that will alleviate their severe chest pain and improve their quality of life.”

Before injecting the stem cells or the placebo, the team examined the three-dimensional image of the heart and ascertained the health of the heart muscle and voltage it generated. Damaged areas of the heart fail to produce adequate quantities of voltage and show low levels of energy.

Jonathan Tobis, clinical professor of cardiology and director of interventional cardiology research at Geffen School of Medicine, said: “We are able to tell by the voltage levels and motion which area of the [heart] muscle is scarred or abnormal and not getting enough blood and oxygen. We then targeted the injections to the areas just adjacent to the scarred and abnormal heart muscle to try to restore some of the blood flow.”

What did they inject? The UCLA team extracted bone marrow from the pelvic bones and isolated CD34+ cells. CD34 refers to a cell surface protein that is found on bone marrow stem cells and mediates the adhesion of bone marrow stem cells to the bone marrow matrix. It is found on the surfaces of hematopoietic stem cells, placental cells, a subset of mesenchymal stem cells, endothelial progenitor cells, and endothelial cells of blood vessels. These are not the only cells that express this cell surface protein, but it does list the important cells for our purposes. Once the CD34+ cells were isolated, the were injected into the heart through a catheter that was inserted into a vein in the groin.

CD34

The team hopes that these cells (a mixture of mesenchymal stem cells, hematopoietic stem cells, and endothelial progenitor cells) will stimulate the growth of new blood vessels (angiogenesis) in the heart, and improve blood flow and oxygen delivery to the heart muscle.

“We will be tracking patients to see how they’re doing,” said William Suh MD, assistant clinical professor of medicine in the division of cardiology at Geffen School of Medicine.

The goal of this study is to enroll 444 patients nation-wide, of which 222 will receive the stem cell treatment, 111 will receive the placebo, and 111 who will be given standard heart care.

Tiny, Poorly-Controlled Study Shows No Benefit for Stem Cell Treatment in Children with Optic Nerve Hypoplasia


Optic nerve hypoplasia (ONH), an underdevelopment of optic nerves that occurs during fetal development, can appear as an isolated condition or as a part of a group of disorders characterized by brain anomalies, developmental delay, and endocrine abnormalities. ONH is a leading cause of blindness in children in North America and Europe and is the only cause of childhood blindness that shows increasing prevalence. No treatments have been shown to improve vision in these children.

RetinaRetina ONH

Because stem cells heal or even regenerate some tissues, some have considered stem cell treatments as an option for this condition.  However, a very small clinical study at Children’s Hospital Los Angeles found no evidence that stem cell therapies improve vision for children with optic nerve hypoplasia (ONH). Their results are reported in the Journal of the American Association for Pediatric Ophthalmology and Strabismus (AAPOS).

Families with a child that has ONH are traveling to China to undergo stem cell treatments that would be illegal in the United States. Because there are presently no viable treatment options available to improve vision in ONH children, such trips are often an act of desperation. The American Association for Pediatric Ophthalmology and Strabismus has also expressed its concern about these procedures, which are usually rather expensive, and have a dubious safety record.

Pediatric neuro-ophthalmologist Mark Borchert, MD, director of both the Eye Birth Defects and Eye Technology Institutes in The Vision Center at Children’s Hospital Los Angeles, realized that a controlled trial of sufficient size was needed to evaluate whether stem cell therapy is effective as a treatment for children with ONH. He agreed to conduct an independent study at the behest of Beike Biotech, which is based in Shenzhen, China and offers a stem cell treatment for ONH. This treatment uses donor umbilical cord stem cells and injects these cells into the cerebrospinal fluid.

Beike Biotech identified 10 children with bilateral ONH (ages 7 to 17 years) who had volunteered to travel to China for stem cell therapy. These patients gave their consent to participate in the study and Children’s Hospital found matched controls from their clinic. However, only two case-controlled pairs were evaluated because Beike Biotech was only able to recruit two patients.

Treatments consisted of six infusions over a 16-day period of umbilical cord-derived mesenchymal stem cells and daily infusions of growth factors. Visual acuity, optic nerve size, and sensitivity to light were to be evaluated one month before stem cell therapy and three and nine months after treatment.

Unfortunately no therapeutic effect was found in the two case-control pairs that were enrolled. “The results of this study show that children greater than 7 years of age with ONH may have spontaneous improvement in vision from one examination to the next. This improvement occurs equally in children regardless of whether or not they received treatment. Other aspects of the eye examination included pupil responses to light and optic nerve size; these did not change following treatment. The results of this research do not support the use of stem cells in the treatment of ONH at this time,” said lead author Cassandra Fink, MPH, program administrator at The Vision Center, Children’s Hospital Los Angeles.

However, confounding factors affect the interpretation of these results because the test subjects received additional alternative therapies (acupuncture, functional electrical stimulation and exercise) while receiving stem cell treatments. They were not supposed to receive such treatments. Additionally, the investigators could not determine the effect of these additional therapies on the subjects’ eyes.

“This study underscores the importance of scientifically testing these procedures to validate them and ensure their safety. Parents of afflicted children should be aware that the science behind the use of stem cell technology is unclear. This study takes a step toward testing this technology and finds no beneficial effect,” said William V. Good, MD, senior associate editor, Journal of AAPOS and Clinical Professor of Ophthalmology and Senior Scientist at the Smith-Kettlewell Eye Research Institute.

Basically, we have an incredibly small study that is also poorly controlled. Because the optic nerve forms during embryonic, fetal and postnatal development, using stem cells to make new nerves seems like a long shot as a treatment.  I better treatment strategy might be to increase the myelination of the optic nerve with neural stem cells, oligodendrocyte precursor cells (OPCs), or Schwann cells.  In general, this study does little to establish the lack of efficacy of such a stem cell treatment.