A Way to Get Stem Cells to Make Living Heart Valve Tissue?


What a benefit it would be to be able to replace diseased and defective heart valves with new heart valves. Thus, living tissue engineered heart valves (TEHV) would be a boon to children who require replacement heart valves that have the capacity to grow with the child and completely integrate into the child’s heart tissue. A persistent challenge for TEHV is accessible human cell source(s) that have the ability to mimic native valve cell phenotypes and possess matrix remodeling characteristics that are essential for long-term function.

Mesenchymal stem cells derived from bone marrow (BMMSC) or adipose tissue (ADMSC) are intriguing cell sources for TEHV. Unfortunately, they have not been compared to pediatric human aortic valve interstitial cells (pHAVIC) in relevant 3-dimensional culture environments.

In a recent study, Bin Duan from the Biomedical Engineering department at Cornell University compared the spontaneous and induced multipotency of ADMSC and BMMSC to that of pHAVIC using different induction culture systems within three-dimensional (3D) bioactive hybrid hydrogels that have similar material properties to those of aortic heart valve leaflets. pHAVICs possessed some multi-lineage differentiation capacity in response to induction media, but these cells were limited to the earliest stages and their differentiation capacity were less potent than either ADMSCs or BMMSCs. ADMSCs expressed cell phenotype markers that were similar to pHAVICs when they were grown in HAVIC growth media spiked with a growth factor called basic fibroblast growth factor (bFGF). BMMSCs generally expressed extra cellular matrix remodeling characteristics similar to pHAVICs.

Duan and his colleagues then chemically attached bFGF to components of the 3D hybrid hydrogels in order to further immobilize them. The immobilized bFGF upregulated vimentin expression and promoted the fibroblastic differentiation of pHAVIC, ADMSC and BMMSC. Since fibroblasts help make heart valves, these changes in gene expression might presage the ability of these cells to form new heart living heart valve tissue.

Thus, these findings show that even though mesenchymal stem cells retain a heightened capacity to form bone in 3D culture, this tendency can be shifted fibroblast cell fates by tethering bFGF to the 3-D matrix. Such a strategy is probably rather important for utilizing stem cell sources in heart valve tissue engineering applications.

This is an important finding.  Even though the production of TEHVs are some ways off, Duan’s findings might provide a strategy to begin cells on the path to making TEHVs.

Tonsil-Based Stem Cells To Repair the Liver


Byeongmoon Jeong and colleagues report in the journal ACS Applied Materials & Interfaces that injections of stem cells from tonsils, a body part we don’t need, can repair damaged livers without the need for surgery. The liver rids the body of toxins, makes blood proteins, and metabolizes a goodly number of molecules from our food. Liver failure is a deadly condition and a liver transplant is often the only option to restore the patient to health. Unfortunately there is a need for available organs for transplantation, Also, liver transplantation presents certain risks and also is extremely expensive.

A promising alternative to liver transplantation is the implantation of liver cells. Adult stem cells can be used to make new liver cells, and bone marrow-based stem cells have been used, but they these cells have inherent limitations. Recently, scientists have identified another stem cell source that can be used for this purpose from tonsils. Every year, thousands of tonsillectomies are performed to remove tonsils, and the extirpated tonsils are discarded. Now, however, these throw-away tissues could have a new purpose. Scientists have devised ways to grow tonsil-based stem cells on a three-dimensional scaffold that simulates living liver tissue.

Jeong’s team encapsulated tonsil-derived stem cells in a heat-sensitive liquid that solidifies into a gel at body temperature. To these cells ensconced in this gel, they added protein growth factors to stimulate the stem cells to differentiate into liver cells. The stem cells differentiated into liver cells, degraded the scaffold, and formed functioning liver cells. Jeong and others think that with a little tweaking, this procedure could potentially provide an injectable tissue engineering technique to treat liver disease without surgery.

See Seung-Jin Kim, Min Hee Park, Hyo Jung Moon, Jin Hye Park, Du Young Ko, Byeongmoon Jeong. Polypeptide Thermogels As a 3D Culture Scaffold for Hepatogenic Differentiation of Human Tonsil-derived Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2014; 140905122318006 DOI:10.1021/am504652y.

New 3D Method Used to Grow Miniature Pancreas


Researchers from the University of Copenhagen, in collaboration with an international team of investigators, have successfully developed an innovative three-dimensional method to grow miniature pancreas from progenitor cells. The future goal of this research is to utilize this model system to fight against diabetes. This research was recently published in the journal Development.

The new method allows the cell material from mice to grow vividly in picturesque tree-like structures.
The new method allows the cell material from mice to grow vividly in picturesque tree-like structures.

The new method takes cell material from mice and grows them in vividly picturesque tree-like structures.  The cells used were mouse embryonic pancreatic progenitors, and they were grown in a compound called Matrigel with accompanying cocktails of growth factors.  In vitro maintenance and expansion of these pancreatic progenitors requires active Notch and FGF signaling, and therefore, this culture system recapitulated the in vivo conditions that give rise to the pancreas in the embryo.

Professor Anne Grapin-Botton and her team at the Danish Stem Cell Centre, in collaboration with colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland, have developed a three-dimensional culture method that takes pancreatic cells and vigorously expands them. This new method allows the cell material from mice to grow vividly into several distinct picturesque, tree-like structures. The method offers tremendous long-term potential in producing miniature human pancreas from human stem cells. Human miniature pancreas organoids would be valuable as models to test new drugs fast and effectively, without the use of animal models.

“The new method allows the cell material to take a three-dimensional shape enabling them to multiply more freely. It’s like a plant where you use effective fertilizer, think of the laboratory like a garden and the scientist being the gardener,” says Anne Grapin-Botton.

In culture, pancreatic cells neither thrive nor develop if they are alone. A minimum of four pancreatic cells, growing close together is required for these cells to undergo organoid development.

“We found that the cells of the pancreas develop better in a gel in three-dimensions than when they are attached and flattened at the bottom of a culture plate. Under optimal conditions, the initial clusters of a few cells have proliferated into 40,000 cells within a week. After growing a lot, they transform into cells that make either digestive enzymes or hormones like insulin and they self-organize into branched pancreatic organoids that are amazingly similar to the pancreas,” adds Anne Grapin-Botton.

The scientists used this system to discover that the cells of the pancreas are sensitive to their physical environment, and are influenced by such seemingly insignificant factors as the stiffness of the gel and contact with other cells.

An effective cellular therapy for diabetes is dependent on the production of sufficient quantities of functional beta-cells. Recent studies have enabled the production of pancreatic precursors but efforts to expand these cells and differentiate them into insulin-producing beta-cells have proved a challenge.

“We think this is an important step towards the production of cells for diabetes therapy, both to produce mini-organs for drug testing and insulin-producing cells as spare parts. We show that the pancreatic cells care not only about how you feed them but need to be grown in the right physical environment. We are now trying to adapt this method to human stem cells,” adds Anne Grapin-Botton.

Researchers Create Inner Ear Structures From Stem Cells


Indiana University scientists have used mouse embryonic stem cells to make key structures of the inner ear. This accomplishment provides new insights into the sensory organ’s developmental process and sets the stage for laboratory models of disease, drug discovery and potential treatments for hearing loss, and balance disorders.

Eri Hashino, professor of otolaryngology at the University of Indiana School of Medicine, and his co-workers, were able to use a three-dimensional cell culture method that directed the stem cells to form inner-ear sensory epithelia that contained hair cells and supporting cells and neurons that detect sound, head movements and gravity.

In the past, other attempts to grow inner-ear hair cells in standard culture systems have not succeeded. Apparently the cues required to form inner-ear hair bundles, which are essential for detecting auditory or vestibular signals, are absent in cell-culture dishes.

Inner ear hair cells
Inner ear hair cells

To conquer this barrier, Hashino and his team changed their culture system. The suspended the cells as aggregates in a specialized culture medium and this mimicked conditions normally found in the body as the inner ear develops.

Another strategy that paid off was to precisely time the application of several small molecules that coaxed the stem cells to differentiate from one stage to the next into precursors for the inner ear.

a, Schematic of vestibular end organs and type I/II vestibular hair cells. vgn, vestibular ganglion neurons. b, c, Pax2 (b) and Calb2 (c) are expressed in all Myo7a+ stem-cell-derived hair cells on day 20. CyclinD1 (cD1) is expressed in supporting cells. d–g, The structural organization of vesicles with Calb2+ Myo7a+ hair cells mimics the E18 mouse saccule (sagittal view) in vivo. nse, nonsensory epithelium. h, Tuj1+ neurons extending processes to hair cells. i, The synaptic protein Snap25 is localized to the basal end of hair cells. j, The postsynaptic marker Syp colocalizes with Ctbp2 (arrowheads and inset). hcn, hair cell nucleus. k, Quantification of synapses on day 16, 20 and 24 hair cells (n > 100 cells, *P < 0.05, ***P < 0.001; mean ± s.d.). l, Overview of in vitro differentiation. Scale bars, 50 μm (d, f, h), 25 μm (b, c, e, g), 10 µm (i), 5 µm (j).  Also, BMP = Bone morphogen protein, FGF = fibroblast growth factor, LGN = Small molecule that inhibits BMP signaling, Wnt = small secreted glycoprotein involved in cell signaling.
a, Schematic of vestibular end organs and type I/II vestibular hair cells. vgn, vestibular ganglion neurons. b, c, Pax2 (b) and Calb2 (c) are expressed in all Myo7a+ stem-cell-derived hair cells on day 20. CyclinD1 (cD1) is expressed in supporting cells. d–g, The structural organization of vesicles with Calb2+ Myo7a+ hair cells mimics the E18 mouse saccule (sagittal view) in vivo. nse, nonsensory epithelium. h, Tuj1+ neurons extending processes to hair cells. i, The synaptic protein Snap25 is localized to the basal end of hair cells. j, The postsynaptic marker Syp colocalizes with Ctbp2 (arrowheads and inset). hcn, hair cell nucleus. k, Quantification of synapses on day 16, 20 and 24 hair cells (n > 100 cells, *P < 0.05, ***P < 0.001; mean ± s.d.). l, Overview of in vitro differentiation. Scale bars, 50 μm (d, f, h), 25 μm (b, c, e, g), 10 µm (i), 5 µm (j). Also, BMP = Bone morphogen protein, FGF = fibroblast growth factor, LGN = Small molecule that inhibits BMP signaling, Wnt = small secreted glycoprotein involved in cell signaling.

Even though the added growth factors made a big difference to the success of this experiment, it was the three-dimensional suspension culture system that provided many important mechanical cues. The tension caused by the pull of the cells on each other played a very important role in directing the differentiation of the cells to become inner-ear precursors.

Karl A Koehler, first author of this paper and a graduate student in the medical neuroscience program at IU School of Medicine said: “The three-dimensional culture allows the cells to self-organize into complex tissues using mechanical cues that are found during embryonic development.”

Hashino added that they were “surprised to see that once stem cells are placed in 3-D culture, these cells behave as if they knew not only how to self-organize into a pattern remarkably similar to the native inner ear.” Hashino continued: “Our initial goal was to make inner-ear precursors in culture, but when we did testing we found thousands of hair cells in a culture dish.”

Electrophysiological testing of these stem cell-derived hair cells showed that they were, in fact, functional, and were similar to those that sense gravity and motion. Moreover, neurons like those that normally link the inner-ear cells to the brain had also developed in their cell culture system, and were connected to the hair cells.

Hashino thinks that additional research is needed to determine how to derived inner-ear cells involved in auditory sensation might be made from stem cells, and how such techniques might be adapted to make human inner ear cells.