Thymosin beta4-Overexpressing Cells Heal Heart After a Heart Attack


Thymosin beta4 is a very highly conserved 43-amino acid peptide that plays a very important role in cell proliferation, migration, and angiogenesis (blood vessel production). Experiments with thymosin beta4 in laboratory animals that have had a heart attack have shown that treatment with thymosin beta4 can reduce cell death in the heart and reduce the size of the infarct, while increasing heart function (see Hannappel E, et al., Arch Biochem Biophys 240 (1985): 236-241; Bock-Marquette, et al., Nature 432 (2007): 466-472; Srivastava D, et al., Ann NY Acad Sci 1112 (2007): 161-170; Grant DS et al., Angiogenesis 3 (1999): 125-135). Also, knocking down thymosin beta4 in endothelial progenitor cells (cells that make blood vessels) prevents these cells from healing the heart after a heart attack (Hinkel, et al., Circulation 117 (2008): 2232-2240).

Thymosin beta4
Thymosin beta4

Given the ability of thymosin beta4 to heal the heart, Dinender Singla and colleagues at the University of Central Florida have engineered embryonic stem cells to express thymosin beta4 and used them to treat laboratory animals that have suffered a heart attack. The results were truly tremendous.

Singla and his team genetically engineered mouse embryonic stem cells to express either red fluorescent protein or red fluorescent protein and thymosin beta4. In culture, those cells that expressed thymosin beta4 showed much more efficient differentiation into heart muscle cells (3-5 times greater).

Effect of Tβ4 Expression on ES Cell Differentiation. A. Fluorescent microscopy of EBs derived from RFP-ES and Tβ4-ES cells. At D12 EBs were stained with anti- sarcomeric α-actin (S-actin) (green) and counterstained with DAPI for nuclear visualization (blue). The lower panel shows S-actin staining in a beating area (square box) in the EBs derived from Tβ4-ES cells. Scale = 200µm. B. Percentage of beating EBs during cardiac myocyte differentiation. Spontaneously beating EBs were examined and counted under a light microscope at D9, 12 and 15. C. Real-time PCR analysis of gene expression of GATA-4, Mef2c and Tbx6 at D12. Data are represented as mean ± SEM, *p< 0.05; vs. RFP ESCs.
Effect of Tβ4 Expression on ES Cell Differentiation.
A. Fluorescent microscopy of EBs derived from RFP-ES and Tβ4-ES cells. At D12 EBs were stained with anti- sarcomeric α-actin (S-actin) (green) and counterstained with DAPI for nuclear visualization (blue). The lower panel shows S-actin staining in a beating area (square box) in the EBs derived from Tβ4-ES cells. Scale = 200µm. B. Percentage of beating EBs during cardiac myocyte differentiation. Spontaneously beating EBs were examined and counted under a light microscope at D9, 12 and 15. C. Real-time PCR analysis of gene expression of GATA-4, Mef2c and Tbx6 at D12. Data are represented as mean ± SEM, *p< 0.05; vs. RFP ESCs.

Next, they gave laboratory mice heart attacks and implanted these cells into the heart. Those mice that received no cells had bucket loads of cell death. Those mice who received embryonic stem cells that did not express thymosin beta4 showed a decrease in cell death 2 weeks after the heart attack. However those mice that received the embryonic stem cells that expressed thymosin beta4 showed a third of the cell death found in the control mice. The same applied to the amount of scarring in the hearts. Animals treated with embryonic stem cells (ESCs) that did not express thymosin beta4 had about half the scarring of the control mice that received no cells, but the hearts treated with thymosin beta4-expressing ESCs showed about a third of the scarring.

Transplanted Tβ4-ES Cells Reduce Cardiac Fibrosis in the Infarcted Mouse Heart. A. Representative photomicrographs of tissue sections stained with Masson’s trichrome at D14 post MI surgery. Scale =100µm. B. Quantitative analysis of interstitial fibrosis for control and experimental groups. #p<0.05 vs. sham, *p<0.05 vs. MI, and $p<0.05 vs. RFP-ESCs. C. Histogram illustrates quantitative MMP-9 expression. #p<0.05 vs sham, *p<0.05 vs. MI. n = 5-7 animals per group.
Transplanted Tβ4-ES Cells Reduce Cardiac Fibrosis in the Infarcted Mouse Heart.
A. Representative photomicrographs of tissue sections stained with Masson’s trichrome at D14 post MI surgery. Scale =100µm. B. Quantitative analysis of interstitial fibrosis for control and experimental groups. #p

When it came to heart function, things were really remarkable. The ESC-treated hearts showed definite improvement over the control animals, but the ESC-thymosin beta4 cells restored heart function so that the hearts worked almost as well as the sham hearts that were never given a heart attack. The fractional shortening was not as high, nor was the end diastolic volume as low, but most of the other functional parameters were close to the sham hearts.

Transplanted Tβ4-ES Cells Improve Cardiac Function in the Infarcted Heart. Echocardiography was performed D14 following MI. A. Raw functional data. Histograms show average quantified measurements of B. left ventricular internal diameter during diastole (LVIDd) C. left ventricular internal diameter during systole (LVIDs) D. fractional shortening FS% E. end diastolic volume (EDV) F. end systolic volume (ESV) G. and ejection fraction EF% at 2 weeks after MI for all treatment groups. #p<0.05 vs. sham, *p<0.05 vs. MI, and $p<0.05 vs. RFP-ESCs. Data set are from n=6-8 animals/group.
Transplanted Tβ4-ES Cells Improve Cardiac Function in the Infarcted Heart.
Echocardiography was performed D14 following MI. A. Raw functional data. Histograms show average quantified measurements of B. left ventricular internal diameter during diastole (LVIDd) C. left ventricular internal diameter during systole (LVIDs) D. fractional shortening FS% E. end diastolic volume (EDV) F. end systolic volume (ESV) G. and ejection fraction EF% at 2 weeks after MI for all treatment groups. #p

Mechanistically, the thymosin beta4 appears to down-regulate PTEN and upregulated the AKT kinase. AKT kinase activation is associated with cell survival and growth. PTEN tends to slow down growth and prevent healing under some conditions.

Effects of Tβ4 Expression on Caspase-3, pAkt, and p-PTEN Activities. Heart homogenates from each group were prepared for ELISA analysis of caspase-3, Akt, and p-PTEN. A. Quantitative analysis of caspase-3, B. p-PTEN, and C. pAkt activity in the hearts following cell transplantation. Data were represented as Mean ± SEM; *p<0.01 vs. MI, #p<0.05 vs. sham. n = 4-5 animals per group.
Effects of Tβ4 Expression on Caspase-3, pAkt, and p-PTEN Activities.
Heart homogenates from each group were prepared for ELISA analysis of caspase-3, Akt, and p-PTEN. A. Quantitative analysis of caspase-3, B. p-PTEN, and C. pAkt activity in the hearts following cell transplantation. Data were represented as Mean ± SEM; *p

This suggests that thymosin beta4 expression seems to augment healing in the heart after a heart attack. Such a therapy could potentially be used to treat heart attack patients, however, more animal experiments will need to be done. What is the proper time frame for thymosin beta4 treatment? How many cells should be implanted in order to provide the maximum therapeutic effect. Can such a treatment be provided via intracoronary delivery? Can conditional expression provide a robust enough response to heal the heart? Can other cells, like mesenchymal stem cells to used to deliver the thymosin beta4? Can c-kit cardiac progenitor cells be used to deliver thymosin beta4?

Many questions remain, but hopefully, this remarkable treatment regime can be ramped up to eventually go to clinical trials.

Stem Cells in the Epicardium of the Heart


Congestive heart failure is the leading cause of morbidity and mortality worldwide. Implanting stem cells into the damaged heart to regenerate the dead heart cells is a potentially exciting prospect for regenerative medicine. Finding the right cell for the job is the greatest challenge, and to this end the heart itself may provide an interesting source of stem cells for regenerative medicine. This source of cells resides on the outside of the heart, a layer known as the epicardium.

Epicardial cells

After a heart attack, the cells of the epicardium differentiate into smooth muscle cells and heart-specific fibroblasts. They do not form heart muscle cells or blood vessels, but they do secrete a whole cadre of growth factors that encourage the heart to form blood vessels. In mice, preconditioning the heart with a protein called “thymosin beta4” induces the epicardial cells to migrate into the heart and form new heart muscle cells (Smart et al., Nature 2001 474: 640-4). Unfortunately, using thymosin beta4 in human patients who have had heart attacks fails to elicit appropriate changes in the myocardium (Zhou et al., J Mol Cell Cardiol 2012 52: 43-7).

Chong and his colleagues have discovered a new stem cell in the epicardium of mice that can grow for long periods of time in culture and are found near blood vessels. Chong and others call this new epicardial stem cell a “cardiac colony-forming-unit fibroblast” or cCFU-F for short (Chong et al., Cell Stem Cell 2011 9: 527-40).

These cCFU-Fs form from the epicardium, but they do not express heart-specific genes (e.g., c-Kit, CD31, Flk1, CD45, Nkx2-5, NG2). When the gene expression profile of cCFU-Fs was examined in some detail, they expressed the same clusters of genes as bone marrow stem cells (Pelekanos et al., Stem Cell Research 2012 8: 58-73). Are these two cell populations the same? Apparently not. Chong and his crew tried to reconstitute the cCFU-Fs in mice that had had their bone marrow completely replaced with green-glowing bone marrow stem cells. The glowing bone marrow stem cells never contributed to the cCFU-F population.

Therefore, can cCFU-Fs contribute to heart regeneration after a heart attack? Can they be primed to form heart muscle with thymosin beta4? Many questions abound, but these cCFU-Fs seem to represent an easily accessed and robust population for regenerative medicine for the heart after a heart attack.