Mesenchymal Stem Cells from Neonatal Thymus Helps Make New Blood Vessels


The thymus is an organ that sits over the top of the heart and it plays a pivotal role in the development of T-lymphocytes. The thymus is a very durable organ that can readily regenerate if it is injured. This regenerative ability is largely due to it high level of vascularization (lots of blood vessels). This vascularization is due to a robust population of resident mesenchymal stem cells that supports blood vessel formation in the damaged thymus. The process of blood vessel formation is called “angiogenesis.” The angiogenic potential of these thymus-based mesenchymal stem cells might hold excellent potential for regenerative therapies.

Thymus_lg

As it turns out, neonatal surgeries tend to generate thymus tissue that is usually thrown out as medical waste. Ming-Sing Si from Mott’s Children Hospital in Ann Arbor, Michigan and colleagues isolated mesenchymal stem cells from these surgically-derived neonatal thymuses and tested their ability to stimulate blood vessels in an experimental setting.

Discarded thymus tissue was obtained from the University of Michigan, and this tissue was minced, degraded with enzymes, and cultured. The mesenchymal stem cells (MSCs) moved from the thymus tissue onto the culture dishes. These thymus-based MSCs grew like gangbusters in culture and could be passaged over 30 times.

Discarded human neonatal thymus tissue is a source of mesenchymal stromal cells (MSCs). (A): Discarded human neonatal thymus tissue during pediatric cardiac surgery. (B): Minced thymus tissue prior to plating. (C): Cells migrating from thymus tissue fragments during explant culture at 10 days. (D): Clonogenicity of thymus MSCs at 2 weeks (representative of 7 donors). (E): Colony-forming efficiency of thymus MSCs. (F): Averaged cumulative population doubling of thymus MSCs (n = 4) over 9 weeks of culture. Abbreviation: CFU-F, fibroblastic colony-forming unit.
Discarded human neonatal thymus tissue is a source of mesenchymal stromal cells (MSCs). (A): Discarded human neonatal thymus tissue during pediatric cardiac surgery. (B): Minced thymus tissue prior to plating. (C): Cells migrating from thymus tissue fragments during explant culture at 10 days. (D): Clonogenicity of thymus MSCs at 2 weeks (representative of 7 donors). (E): Colony-forming efficiency of thymus MSCs. (F): Averaged cumulative population doubling of thymus MSCs (n = 4) over 9 weeks of culture. Abbreviation: CFU-F, fibroblastic colony-forming unit.

When these thymus-based MSCs were combined with human umbilical vein endothelial cells, within one day, the cells formed an extensive network of blood vessels.

Thymus mesenchymal stromal cells (MSCs) cooperate with human umbilical vein endothelial cells (HUVECs) to form a network in a two-dimensional angiogenesis assay. (A): Monolayer appearance of HUVECs after 48 hours of culture on fibrin hydrogel. (B): Thymus MSCs clustered together after 24 hours of culture on fibrin hydrogel. (C): Combining HUVECs with thymus MSCs (2:1) resulted in the appearance of interconnected tubules at 24 hours. Scale bars = 100 μm. Results are representative of two independent experiments.
Thymus mesenchymal stromal cells (MSCs) cooperate with human umbilical vein endothelial cells (HUVECs) to form a network in a two-dimensional angiogenesis assay. (A): Monolayer appearance of HUVECs after 48 hours of culture on fibrin hydrogel. (B): Thymus MSCs clustered together after 24 hours of culture on fibrin hydrogel. (C): Combining HUVECs with thymus MSCs (2:1) resulted in the appearance of interconnected tubules at 24 hours. Scale bars = 100 μm. Results are representative of two independent experiments.

Gene expression studies showed that culturing thymus MSCs with human umbilical vein endothelial cells (HUVECs) caused the HUVECs to express a variety of blood vessel-specific genes.  These thymus-based MSCs were also able to induce blood vessels if the cells were wadded up into a ball (spheroids).

To top it all off, Si and others implanted thymus-based MSCs underneath the skin of nude mice.  They used hydrogels with no cells, hydrogels plus HUVECs, hydrogels plus thymus-based MSCs, and hydrogels with thymus-based MSCs plus HUVECs.  The control implants and the HUVEC implants showed no blood vessels.  HUVECs make very good blood vessels, but they have to be directed to do so.  Both the thymus-based MSCs and the MSCs plus HUVECs showed extensive integration into the host tissue with lots of blood vessels.

Thymus mesenchymal stromal cells (MSCs) incite angiogenesis in vivo. Fibrin constructs without spheroids (control) or with 500 spheroids with 600 human umbilical vein endothelial cells (HUVECs) per spheroid, 200 thymus MSCs per spheroid, or 600 HUVECs plus 200 thymus MSCs per spheroid were generated (n = 3 per group) and were implanted subcutaneously for 14 days in NOD-SCID mice. Explanted constructs were photographed (edges traced in A–D) and processed for histology. (A): Controls did not manifest local reaction. (B): HUVEC constructs appeared avascular. (C): Thymus MSC constructs were integrated and caused increased adjacent vascularization. (D): HUVEC plus thymus MSC constructs were integrated and surrounded by a host vascular response and appeared to have vessels within. (E–H): Construct hematoxylin and eosin staining. Scale bars = 50 μm. (E): Avascular tissue invasion of control construct. Scale bar = 100 μm. (F): HUVEC construct with adjacent cellularity and vascularity between panniculus carnosus muscle layer (∗) and construct. “Ghost” (†) of the prior locations of spheroid and necrotic spheroid (‡) were present in internal regions of all constructs with spheroids. (G): Thymus MSC construct with increased adjacent cellularity and vascularity. (H): HUVEC plus thymus MSC construct with increased vascularization within the construct. (I): Manual measurement of vessel density demonstrates significant differences by two-way analysis of variance. Control and HUVEC constructs had minimal adjacent vascularization. Thymus MSC constructs promoted the greatest adjacent response, whereas HUVEC plus thymus MSC constructs contained the greatest vessel density within the construct. (J, K): Immunohistochemical staining with human-specific CD31 monoclonal antibody revealed that only constructs with HUVEC plus thymus MSCs contained CD31-positive luminal structures with blood cells. Scale bar = 20 μm. Abbreviations: C, controls; H, human umbilical vein endothelial cell constructs; T, thymus mesenchymal stromal cell construct.
Thymus mesenchymal stromal cells (MSCs) incite angiogenesis in vivo. Fibrin constructs without spheroids (control) or with 500 spheroids with 600 human umbilical vein endothelial cells (HUVECs) per spheroid, 200 thymus MSCs per spheroid, or 600 HUVECs plus 200 thymus MSCs per spheroid were generated (n = 3 per group) and were implanted subcutaneously for 14 days in NOD-SCID mice. Explanted constructs were photographed (edges traced in A–D) and processed for histology. (A): Controls did not manifest local reaction. (B): HUVEC constructs appeared avascular. (C): Thymus MSC constructs were integrated and caused increased adjacent vascularization. (D): HUVEC plus thymus MSC constructs were integrated and surrounded by a host vascular response and appeared to have vessels within. (E–H): Construct hematoxylin and eosin staining. Scale bars = 50 μm. (E): Avascular tissue invasion of control construct. Scale bar = 100 μm. (F): HUVEC construct with adjacent cellularity and vascularity between panniculus carnosus muscle layer (∗) and construct. “Ghost” (†) of the prior locations of spheroid and necrotic spheroid (‡) were present in internal regions of all constructs with spheroids. (G): Thymus MSC construct with increased adjacent cellularity and vascularity. (H): HUVEC plus thymus MSC construct with increased vascularization within the construct. (I): Manual measurement of vessel density demonstrates significant differences by two-way analysis of variance. Control and HUVEC constructs had minimal adjacent vascularization. Thymus MSC constructs promoted the greatest adjacent response, whereas HUVEC plus thymus MSC constructs contained the greatest vessel density within the construct. (J, K): Immunohistochemical staining with human-specific CD31 monoclonal antibody revealed that only constructs with HUVEC plus thymus MSCs contained CD31-positive luminal structures with blood cells. Scale bar = 20 μm. Abbreviations: C, controls; H, human umbilical vein endothelial cell constructs; T, thymus mesenchymal stromal cell construct.

These MSCs show low expression of human leukocyte antigen class I, which, translated, means that these cells are unlikely to be recognized by the patient’s immune system.  Therefore, these cells could be donated to patients whose resident MSCs are of poor quality or do not have enough of their own MSCs for therapeutic processes.

This paper shows that discarded neonatal thymus contains large numbers of resident MSCs that can be isolated and cultured by a standard explant method.  These MSCs have all the characteristics of traditional MSCs, but have more robust growth characteristics in culture.  These thymus MSCs also possess outstanding proangiogenesis qualities that should be further tested and considered as promoters of tissue and organ regeneration in tissue engineering strategies.

An Entire Organ Grown Inside an Animal


For the first time, scientists from Scotland have reported that an entire, functional organ has been grown from scratch inside a laboratory animal. A Scottish research group successfully transplanted a small quantity of cells into a laboratory mouse that grew and developed into a functional thymus.

These findings were published in the journal Nature Cell Biology, and might open the door to new alternatives to organ transplantation. This research certainly shows great promise, but is still years away from clinical trials and reproducible human therapies.

If you are wondering what the thymus is, it serves as an integral part of the immune system. The thymus is located just above and slightly over the heart and produces a vital component of the immune system, called T-cells, which fight infections and regulate the immune response.

The thymus
The thymus

thymus location

 

A research team from the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh began this experiment with mouse embryonic fibroblasts.  These fibroblasts are found in the skin and connective tissue of the embryo.  These mouse embryonic fibroblasts were genetically engineered to expressed the FOXN1 gene, which encodes a transcription factor known as the “forkhead box N1″ protein.  The forkhead box N1 protein binds to DNA and activates the expression of genes necessary to make thymic epithelial cells.  Mice that do not have a functional copy of the FOXN1 gene a “nude” mice.  They are nude because they have no hair and have no thymus.  

Once engineered to express FOXN1, the fibroblasts began to differentiate into thymic epithelial cells.  The Scottish team mixed these genetically engineered fibroblasts with some other support cells and transplanted them into laboratory mice where they summarily formed a fully functional thymus.  Structurally the animal-grown thymus contained the two main regions – the cortex and medulla – and it also produced T-cells.

Prof Clare Blackburn, who was part of the research team, said it was “tremendously exciting” when the team realized what they had accomplished.  Blackburn told the BBC: “This was a complete surprise to us, that we were really being able to generate a fully functional and fully organised organ starting with reprogrammed cells in really a very straightforward way.  This is a very exciting advance and it’s also very tantalising in terms of the wider field of regenerative medicine.”

Such a procedure could benefit patients who need a bone marrow transplant and children who are born without a functioning thymus.  Likewise because our immune response diminishes as we age and out thymus shrivels, such a procedure might boost the waning immune system of aged patients.   could all benefit from such a procedure.

However, there are a number of problems to solve before this procedure can cross the bridge from animal studies to hospital therapies.  First of all, the recipient of these implants were nude mice that had no thymus and could not reject transplanted tissue.  Also, the use of embryonic fibroblasts would cause a robust immune response against them.  Some other cell type must be found for this procedure that grows robustly and does not cause transplantation rejection.

Researchers also need to be sure that the transplant cells do not pose a cancer risk by growing uncontrollably.  Prof Robin Lovell-Badge, from the National Institute for Medical Research, said: “This appears to be an excellent study.  This is an important achievement both for demonstrating how to make an organ, albeit a relatively simple one, and because of the critical role of the thymus in developing a proper functioning immune system.  However… the methods are unlikely to be easy to translate to human patients.”

This experiment is a testimony of just how far the field of regenerative medicine has come.  Already patients with lab-grown blood vessels, windpipes and bladders have benefited from advances in regenerative medicine. These tissue engineered structures have been made by “seeding” a patient’s cells into a scaffold which is then implanted.  The thymus in this case only required one injection of a cluster of cells.  While it is doubtful that other organs will be this easy to grow, it is an encouraging start.

Also, this experiment utilized “direct reprogramming” that did not require taking cells through the embryonic stage.  Instead one-gene reprogramming directed the cells to make thymus epithelium cells.  This almost certainly promises to be a much safer way to make cells for regenerative treatments.

Dr Paolo de Coppi, who pioneers regenerative therapies at Great Ormond Street Hospital, said: “Research such as this demonstrates that organ engineering could, in the future, be a substitute for transplantation.  Engineering of relatively simple organs has already been adopted for a small number of patients and it is possible that within the next five years more complex organs will be engineered for patients using specialised cells derived from stem cells in a similar way as outlined in this paper.  It remains to be seen whether, in the long-term, cells generated using direct reprogramming will be able to maintain their specialised form and avoid problems such as tumour formation.”

Embryonic Stem Cells Used to Make Laboratory-Created Thymus


Medical researchesr from UC San Francisco have used embryonic stem cells to construct a functioning mouse thymus in the laboratory. When implanted into a living mouse, this laboratory-made thymus can successfully foster the development of T cells, which the body needs to fight infections and prevent autoimmune reactions.

This achievement marks a significant step toward developing new treatments for autoimmune disorders such as type 1 diabetes and other autoimmune diseases, such as systemic lupus erythematosis and ulcerative colitis.

This research team was led by immunologist Mark Anderson and stem cell researcher Matthias Hebrok. They used a unique combination of growth factors to push the embryonic stem cells into a particular developmental trajectory. After a period of trial and error, they eventually found a formula that produced functional thymus tissue.

In our bodies, the thymus lies just over the top of our heart, and it serves to instruct T lymphocytes (a type of white blood cell) what to attack and what to leave alone. Because T cells serve a vital role in the immune response, the thymus serves a vital function.

thymus

Typically, each T cell attacks a foreign substance that it identifies by binding the foreign substance to its cell surface receptor. This T cell-specific receptor is made in each T cell by a set of genes that are randomly shuffled, and therefore, each T cell has a unique cell receptor that can bind particular foreign molecules. Thus each T cell recognizes and attacks a different foreign substance.

With in the thymus, T cells that attack the body’s own proteins are eliminated. Thymic cells express major proteins from elsewhere in the body. The T cells that enter the thymus first undergo “Positive Selection” in which the T cell comes in contact with self-expressed proteins that are found in almost every cell of the body and are used to tell “you” from something that is not from “you.” In order to destroy cells that do not bear these self-expressed proteins, they must be able to properly identify them. If T cells that enter the thymus cannot properly recognize those self-expressed proteins (known as MHC or major histocompatibility complex proteins for those who are interested), the thymus destroys them. Second, T cells undergo “Negative Selection” in which if the T cell receptor binds to self MHC proteins, that T cell is destroyed to avoid autoimmunity.

The thymus tissue grown in the laboratory in this experiment was able to nurture the growth and development of T cells. It could act as a model system to study patients with fatal diseases from which there are no effective treatments, according the Mark Anderson.

As an example, DiGeorge Syndrome is caused by a small deletion of a small portion of chromosome 22 and infants born with DiGeorge Syndrome are born without a thymus and they usually die during infancy.

Other applications include manipulating the immune system to accept transplanted tissues such as implanted stem cells or organs from donors that are not a match to the recipient.

Anderson said, “The thymus is an environment in which T cells mature and where they also are instructed on the difference between self and nonself.” Some T cells are prepared by the thymus to attack foreign invaders and that includes transplanted tissue. Other T cells that would potentially attack our own tissues are eliminated by the thymus.

Laboratory-induced thymus tissue could be used to retrain the immune system in autoimmune diseases so that the T cells responsible for the autoimmune response eventually ignore the native tissues they are attacking.

Hebrok warns that he and his team have not perfectly replicated a thymus. Only about 15% of the cells are successfully directed to become thymus tissue with the protocols used in this study. Nevertheless, Anderson asserted, “We now have developed a tool that allows us to modulate the immune system in a manner that we never had before.”