Tissue Kallikrein-Modified Human EPCs Improve Cardiac Function


When cells are implanted into the heart after a heart attack, the vast majority of them succumb to the hostile environment in the heart and die. Twenty-four hours after implantation there is a significant loss of cells (see Wu et al Circulation 2003 108:1302-1305). That fact that implanted bone marrow or fat-based stem cells benefit the heart despite their evanescence is a remarkable testimony to their healing power.

To mitigate this problem, stem cell scientists have used a variety of different strategies to increase the heartiness and survival of implanted stem cells. Two main strategies have emerged: preconditioning cells and genetically engineering cells. Both strategies increase the survival of implanted stem cells (see here, and here).

When it comes to genetically engineering stem cells, Lee and Julie Chao from the Medical University of South Carolina in Charleston, South Carolina have used endothelial progenitor cells (EPCs) from human umbilical cord blood to treat mice that had suffered heart attacks, except that these cells were genetically engineered to express “Tissue Kallikrein” or TK. TK is encoded by a gene called KLKB1, which is on chromosome 4 at region q34-35 (in human genetics, the long arm of a chromosome is the “q” arm and the small arm is the “p” or petite arm). TK is initially synthesized as an inactive precursor called prekallikrein. Prekallikrein must be clipped in order to be activated and the proteases (proteases are protein enzymes that cut other proteins into smaller fragment) that do so are either clotting factor XII, which plays a role in blood clotting, and PRCP, which is also known as Lysosomal Pro-X carboxypeptidase.

TK is a protease that degrades a larger protein called kininogen in two smaller peptides called bradykinin and kallidin, both of which are active signaling molecules. Bradykinin and kallidin cause relaxation of smooth muscles, thus lowering blood pressure, TK can also degrade plasminogen to form the active enzyme plasmin.

So why engineer EPCs to express TK? As it turns out, TK activates an internal protein in cells called Akt, and activated Akt causes cells to survive and prevents them from dying (see Krankel et al., Circulation Research 2008 103:1335-1343; Yao YY, et al., Cardiovascular Research 2008 80: 354-364; Yin H et a., J Biological Chem 2005 280: 8022-8030).

The first experiments were test tube experiments in which TK EPCs were incubated with cultured heart muscle cells to determine their ability to prevent cell death. When cultured heart muscle cells were exposed to hydrogen peroxide, they died left and right, but when they were incubated with the TK-EPCs and hydrogen peroxide, far fewer of them died.

Upper panel consists of cells stained with a TUNEL stain, which designates those cells that are dead or dying.  The bottom panel are DAPI stained cells, which is a nuclear stain that marks all available cells dead or live. From left to right, normal cells, cell exposed to hydrogen peroxide, cells exposed to hydrogen peroxide plus the genes for TK, and finally, cells exposed to hydrogen peroxide and TK-EPCs.
Upper panel consists of cells stained with a TUNEL stain, which designates those cells that are dead or dying. The bottom panel are DAPI stained cells, which is a nuclear stain that marks all available cells dead or live.
From left to right, normal cells, cell exposed to hydrogen peroxide, cells exposed to hydrogen peroxide plus the genes for TK, and finally, cells exposed to hydrogen peroxide and TK-EPCs.

When these cells were exposed to low levels of oxygen, a similar result was observed, expect that the cells co-incubated with TK-EPCs showed significantly less cell death.

When TK-EPCs were injected into the infarct border zones of the heart just after they had heart attacks, the results seven days after the heart attacks were striking. The heart function of the control mice was lousy to say the least. The heart walls had thinned, their ejection fractions were in the tank (~23%) and their echocardiograms were far from normal. However, the TK-EPC-injected mice had a relatively normal echocardiogram, thick heart wall, pretty good ejection fractions (52% and oppose to the 76% of mice that had never had a heart attack), and good heart function in general. Also, the size of the infarcts was reduced in those animals whose hearts had been injected with TK-EPCs.

Representative Masson’s trichrome staining. Original magnification is 10. (f) Echocardiographic measurements for determination of LV function from M-mode measurements. (g) MDA in the ischemic mouse heart at day 7 after MI. Values are expressed as mean±s.e.m. (n¼6, *Po0.05 vs Ad.Null-hEPC- and medium-treated group; #Po0.05 vs medium-treated group).
Representative Masson’s trichrome staining. Original magnification is 10. (f) Echocardiographic measurements for determination of LV function from M-mode measurements. (g) MDA in the ischemic mouse heart at day 7 after MI. Values are expressed as mean±s.e.m. (n¼6, *Po0.05 vs Ad.Null-hEPC- and medium-treated group; #Po0.05 vs medium-treated group).

There were two other bonuses to using TK-EPCs. First, as expected, the density of new blood vessels was substantially higher in hearts that received injections of TK-EPCs. Secondly, the TK-EPCs definitely survived better than their non-genetically engineered counterparts.

Ex-vivo optical imaging study. (a, b) Representative NIR fluorescent images in explanted organs at days 2 or 7 following implantation of DiDlabeled hEPCs into the ischemic myocardium of nude mice. Bars represent maximum radiance. (a: 2 days after cell delivery; b: 7 days after cell delivery). (c) Quantitative analysis of NIR fluorescent signals in explanted hearts among each group at two time points. All values are expressed as mean±s.e.m. (n¼3–4, *Po0.01 vs control group).
Ex-vivo optical imaging study. (a, b) Representative NIR fluorescent images in explanted organs at days 2 or 7 following implantation of DiDlabeled hEPCs into the ischemic myocardium of nude mice. Bars represent maximum radiance. (a: 2 days after cell delivery; b: 7 days after cell delivery). (c) Quantitative analysis of NIR fluorescent signals in explanted hearts among each group at two time points. All values are expressed as mean±s.e.m. (n¼3–4, *Po0.01 vs control group).

These results also confirm that TK works in heart muscle cells by activating the Akt protein inside the cells.  This establishes that TK works through the Akt pathway.

Once again, we see that transplantation of stem cells after a heart attack can improve the function and structure of the heart after a heart attack.  Indeed this strategy seems to work again and again.  These experiments were done in mice and therefore, they must be successful in a larger animal, like a pig before they can be deemed efficacious and safe for use in human clinical trials.  Even so, these results are hopeful.

Mesenchymal Stem Cells Engineered to Express Tissue Kallikrein Increase Recovery After a Heart Attack


Julie Chao is from the Department of Biochemistry and Molecular Biology, at the Medical University of South Carolina. Dr. Chao and her colleagues have published a paper in Circulation Journal about genetically modified mesenchymal stem cells and their ability to help heal a heart that has just experienced a heart attack.

Several laboratories have used mesenchymal stem cells (MSCs), particularly from bone marrow, to treat the hearts of laboratory animals that have recently experienced a heart attack. However, heart muscle after a heart attack is a very hostile place, and implanted MSCs tend to pack up and die soon after injection. Therefore, such injected cells do little good.

To fix this problem, researchers have tried preconditioning cells by growing them in a harsh environment or by genetically engineering them with genes that can increase their tolerance of harsh environments. Both procedures have worked rather well. In this paper, Chao and her group engineered bone marrow-derived MSCs to express the genes that encode “tissue kallikrein” (TK). TK circulates throughout our bloodstream but several different types of cells also secrete it. It is an enzyme that degrades the protein “kininogen” into small bits that have several benefits. Earlier studies from Chao’s own laboratory showed that genetically engineering TK into the heart improved heart function after a heart attack and increased the ability of MSCs to withstand harsh conditions (see Agata J, Chao L, Chao J. Hypertension 2002; 40: 653 – 659; Yin H, Chao L, Chao J. Journal of  Biol Chem 2005; 280: 8022 – 8030). Therefore, Chao reasoned that using MSCs engineered to express TK might also increase the ability of MSCs to survive in the post-heart attack heart and heal the damaged heart.

In this paper, Chao and others made adenoviruses that expressed the TK gene. Adenoviruses place genes inside cells, but they do not integrate those genes into the genome of the host cell. Therefore, they are safer to use than retroviruses. Chao and others used these TK-expressing adenoviruses to infect tissue and MSCs.

When TK-expressing MSCs were exposed to low-oxygen conditions, like what cells might experience in a post-heart attack heart, the TK-expressing cells were much heartier than their non-TK-expressing counterparts. When injected into rat hearts 20 minutes after a heart attack had been induced, the TK-expressing MSCs showed good survival and robust TK expression. Control hearts that had been injected with non-TK-expression MSCs or had not been given a heart attack showed no such elevation of TK expression.

There were also added bonuses to TK-expressing MSC injections. The amount of inflammation in the hearts was significantly less in the hearts injected with TK-expressing MSC injections compared to the controls. There were fewer immune cells in the heart 1 day after the heart attack and the genes normally expressed in a heart that is experiencing massive inflammation were expressed at lower levels relative to controls, if they were expressed at all.

Reduced inflammation by TK-MSC administration was determined by (C) ED-1 immunohistochemical staining, (D) monocyte/macrophage quantification, (E) neutrophil quantification, and gene expression of (F) TNF-α, (G) ICAM-1, and (H) MCP-1. ED-1-positive cells are indicated by arrows. Original magnification, ×200. Data are mean ± SEM (n=5–8). *P<0.05 vs. other MI groups; **P<0.05 vs. MI/Control group. MSC, mesenchymal stem cell.
Reduced inflammation by TK-MSC administration was determined by (C) ED-1 immunohistochemical staining, (D) monocyte/macrophage quantification, (E)
neutrophil quantification, and gene expression of (F) TNF-α, (G) ICAM-1, and (H) MCP-1. ED-1-positive cells are indicated by arrows.
Original magnification, ×200. Data are mean ± SEM (n=5–8). *P

Another major bonus to the injection of TK-expressing MSCs into the hearts of rats was that these cells protected the heart muscle cells from programmed cell death. To make sure that this was not some kind of weird artifact, Chao and her team placed the TK-expressing MSCs in culture with heart muscle cells and then exposed them to low-oxygen tension conditions. Sure enough, the heart muscle cells co-cultured with the TK-expressing MSCs survived better than those co-cultured with non-TK-expressing MSCs.

TK-MSCs protect against cardiac cell apoptosis at 1 day after myocardial infarction (MI) and in vitro. TK-MSC administration reduced apoptosis in the infarct area at 1 day after MI, as determined by (A) TUNEL staining, (B) quantification of apoptotic cells, and (C) caspase-3 activity. Original magnification, ×200. Data are mean ± SEM (n=5–8). *P<0.05 vs. other MI groups. Cultured cardiomyocytes treated with 0.5 ml of TK-MSC-conditioned medium exhibit higher tolerance to hypoxia-induced apoptosis, as evidenced by (D) Hoechst staining,
TK-MSCs protect against cardiac cell apoptosis at 1 day after myocardial infarction (MI) and in vitro. TK-MSC administration
reduced apoptosis in the infarct area at 1 day after MI, as determined by (A) TUNEL staining, (B) quantification of apoptotic
cells, and (C) caspase-3 activity. Original magnification, ×200. Data are mean ± SEM (n=5–8). *Pcardiomyocytes treated with 0.5 ml of TK-MSC-conditioned medium exhibit higher tolerance to hypoxia-induced apoptosis, as
evidenced by (D) Hoechst staining,

Finally, when the hearts of the rats were examined 2 weeks after the heart attack, it was clear that the enlargement of the heart muscle (so-called “remodeling”) occurred in animals that had received non-TK-expressing MSCs or had received no MSCs at all, but did not occur in the hearts of rats that had received injections of TK-expressing MSCs. The heart scar was also significantly smaller in the hearts of rats that had received injections of TK-expressing MSCs, and had a greater concentration of new blood vessels. Apparently, the TK-expressing MSCs induced the growth of new blood vessels by recruiting EPCs to the heart to form new blood vessels.

In conclusion, the authors write that “MSCs genetically-modified with human TK are a potential therapeutic for ischemic heart diseases.”

Getting FDA approval for genetically engineered stem cells will not be easy, but TK engineering seems much safer than some of the other modifications that have been used. Also the vascular and cardiac benefits of this gene seem clear in this rodent model. Pre-clinical trials with larger animals whose cardiac physiology is more similar to humans is definitely warranted and should be done before any talk of human clinical trials ensues.