Stem Cells Replace Hair Cells in Cochlea of Mice


In mammals, hearing loss is usually due to damage to the sound-sensing hair cells in the inner ear.

Originally, the hair cells were thought to be irreplaceable, but research in mice has shown that the supporting cells that provide structural support to the hair cells can turn into hair cells. If this technology can be applied in older animals, then it might provide a way to stimulate hair cell replacement in adults and treatments for deafness as a result of hair cell loss.

According to Albert Edge of the Harvard Medical School and Massachusetts Eye and Ear Infirmary, hair cell replacement definitely occurs, but does so as rather low levels. According to Edge: “The finding that newborn hair cells regenerate spontaneously is novel.”

 New Hair Cells in the Pillar Cell Region after Gentamicin Damage (A) Illustration of organ of Corti structure showing the Pou4f3-positive hair cells (blue), the Lgr5-positive supporting cells (red), and the remaining supporting cells in gray. Both the red and gray supporting cells are Sox2 positive. The green line indicates the xy plane from which the confocal slices in (B)–(G) are taken. (B–G) Confocal slices and cross sections from the midapex of neonatal organ of Corti explant cultures, treated with gentamicin and lineage-traced using the CAG-tdTomato reporter, were stained for DsRed (red). A white line on the whole-mount image shows the location of the cross section, and yellow and white brackets indicate IHCs and OHCs, respectively. Arrows point to new reporter-positive (or reporter-negative for Pou4f3) hair cells in the pillar cell region. Scale bar, 10 mm. (B) A reporter-positive hair cell from the Lgr5 lineage (such as those counted in H) was visible in the pillar cell region. (C and D) Reporter staining identified the hair cells marked by the white arrows as derived fromLgr5-positive cells; costaining for SOX2 (C) and location in the pillar cell region indicated that they were newly differentiated, and an OHC phenotype was suggested by the expression of PRESTIN (D). (D0 ) PRESTIN channel from (D) shows staining in the membrane and cuticular plate of the new hair cell. (E and F) Staining for the Sox2 lineage reporter identified the hair cells marked by the white arrows as derived from supporting cells; their location (pillar cell region) and costaining for SOX2 (E) identified them as newly differentiated cells, and costaining for PRESTIN (F) indicated an OHC identity. (G) The lack of Pou4f3 lineage reporter staining and the location in the pillar region identified the hair cell marked by the white arrow as a new hair cell, and costaining for PRESTIN indicated an OHC identity. (H) Increased numbers of Lgr5(blue bars) andSox2(red bars) reporter-positive hair cells were observed in the pillar cell region of the organ of Corti after gentamicin treatment (mean ± SEM per 100 mm; *p < 0.05, ***p < 0.001).
New Hair Cells in the Pillar Cell Region after Gentamicin Damage
(A) Illustration of organ of Corti structure showing the Pou4f3-positive hair cells (blue), the Lgr5-positive supporting cells (red), and the remaining supporting cells in gray. Both the red and gray supporting cells are Sox2 positive. The green line indicates the xy plane from which the confocal slices in (B)–(G) are taken.  (B–G) Confocal slices and cross sections from the midapex of neonatal organ of Corti explant cultures, treated with gentamicin and lineage-traced using the CAG-tdTomato reporter, were stained for DsRed (red). A white line on the whole-mount image shows the location
of the cross section, and yellow and white brackets indicate IHCs and OHCs, respectively. Arrows point to new reporter-positive (or reporter-negative for Pou4f3) hair cells in the pillar cell region. Scale bar, 10 mm.  (B) A reporter-positive hair cell from the Lgr5 lineage (such as those counted in H) was visible in the pillar cell region.  (C and D) Reporter staining identified the hair cells marked by the white arrows as derived fromLgr5-positive cells; costaining for SOX2 (C) and location in the pillar cell region indicated that they were newly differentiated, and an OHC phenotype was suggested by the expression of PRESTIN (D). (D0 ) PRESTIN channel from (D) shows staining in the membrane and cuticular plate of the new hair cell.  (E and F) Staining for the Sox2 lineage reporter identified the hair cells marked by the white arrows as derived from supporting cells; their location (pillar cell region) and costaining for SOX2 (E) identified them as newly differentiated cells, and costaining for PRESTIN (F) indicated an OHC identity.  (G) The lack of Pou4f3 lineage reporter staining and the location in the pillar region identified the hair cell marked by the white arrow as a new hair cell, and costaining for PRESTIN indicated an OHC identity.  (H) Increased numbers of Lgr5(blue bars) andSox2(red bars) reporter-positive hair cells were observed in the pillar cell region of the organ
of Corti after gentamicin treatment (mean ± SEM per 100 mm; *p < 0.05, ***p < 0.001).

Earlier work has shown that inhibition of the Notch signaling pathway increases the formation of new hair cells not from remaining hair cells but from nearby supporting cells that express a cell-surface protein called Lgr5.

When Edge and his team used small molecules to inhibit the Notch signaling pathway, even more support cells differentiated into hair cells, and the Lgr-5-expressing cells were the only supporting cells that differentiated under these conditions.

By combining these new findings about Lgr-5-expressing cells with the previous finding that Notch inhibition can regenerate hair cells, scientists should be able to design new hair cell regeneration strategies to treat hearing loss and deafness.

Mesenchymal stem cells form heart muscle


On August 3rd, 2009, the University of Miami Miller School of Medicine released a press piece that reported the results on a study by Joshua M. Hare, who is the director of the Interdisciplinary Stem Cell Institute at the Miller School. This study examined the ability of mesenchymal stem cells to fix ailing hearts.

Mesenchymal stem cells are found in lots of different places in our bodies. They are found in bone marrow stroma, fat, connective tissue, blood vessels, umbilical cord, and lots of other places too. These cells might come from “perivascular” cells, which are cells that hang around blood vessels. Nevertheless, mesenchymal stem cells have the ability to form bone, cartilage, fat, and muscle. They also have a fascinating capacity to hide from the immune system. They have groups of surface proteins that prevent cells from the immune systems from recognizing them as foreign, and therefore, mesenchymal stem cells from one person can be transferred into an unrelated person without fear of transplantation rejection.

Several experiments have shown that mesenchymal stem cells (MSCs) can differentiate into heart muscle if treated with the right chemicals (S. Tomita, et al., Circulation 1999;100:II-247–II-256; Also see H. Okura, et al., Tissue Eng Part C Methods, 2009). Transplanting MSCs into the hearts of laboratory animals that have had heart attacks can also help the fix the heart (D. Wolf, et al., J Am Soc Echocardiogr 2007;20:512-20). However, there is a raging debate over how MSCs help broken hearts get better.

Even though MSCs can form heart muscle in culture, they seem to do so rather poorly (Y. Zhang, et al., Interact Cardiovasc Thorac Surg. 2009 Dec;9(6):943-6). Also, several studies suggest that once MSCs are transplanted into ailing hearts, they do not differentiate into heart muscle with any efficiency worth bragging about and seem to help the heart by means of the chemicals they produce (Ryota Uemura, et al., Circulation Res 98 (2006): 1414-21).

There are, however, some reasons to suspect that this is not the end of the story. Engineering MSCs with various genes or administering MSCs with certain chemicals can push then to form heart muscle at higher rates (Yigang Wang, et al. Am J Physiol Heart Circ Physiol (nov 6, 2009, doi:10.1152/ajpheart.00765.2009). Also, in particular experiments, MSCs clearly form heart muscle (J. Tang, et al., Eur J Cardiothorac Surg 30 (2006): 353-61).

Clinical studies with MSCs for heart problems have been conducted but the data are limited. Initial studies were very encouraging (S. Chen, et al., Am J Cardiol 94 (2004): 92-5 and S. Chen, et al., J. Invasive Cardiol 18 (2006): 552-6). Now a new study has shown that MSCs not only help people who have had a recent heart attack, but that they turn into heart muscle and other heart tissues.  MSCs can also help form blood vessels and the increase of blood flow to the heart also helps an ailing heart.  This seems to be one of the main ways that bone marrow-based stem cells help hearts after a heart attack.  Therefore MSCs might be one of the best ways to treat bum hearts, but certainly more work needs to be done.