Bone Marrow Mesenchymal Stem Cell Aggregates for Treating Deep Skin Wounds


Cuts, bruises, lacerations, abrasions, of the skin are some of the most common injuries. Deeper wounds that extend into the dermis are more susceptible to chronic inflammation and suffer greatly if they are bumped, knocked, or run into. Such wounds are also more difficult to heal, since a full-thickness cutaneous wound usually damages many different structures and cell lineages. Fortunately, the healing of these structures begins directly after production of the wound. Regeneration is largely orchestrated by growth factors such as Vascular Endothelial Growth Factor and Transforming Growth Factor-β. Since mesenchymal stem cells (MSCs) are a good source of these growth factors, they might be promising candidates for treating full-thickness wounds.

Yan Jin and his colleagues at the Research and Development Center for Tissue Engineering in Shaanxi, China have tested the ability of bone marrow-derived mesenchymal stem cells (BMMSCs) to accelerate the healing of deep skin wounds.

Jin and his colleagues, Yulin An, Wei Wei, Huan Jing, Leigo Ming, and Shiyu Lui used bone marrow from mice that had been genetically engineered to express Green Fluorescent Protein (GFP) in their bone marrow. After isolating mesenchymal stem cells from the bone marrow of these mice, they applied the cells to rats that had suffered full-layer skin cutaneous wounds. However, they tested several different ways of applying these cells to the wound.

In one group of rats, GFP+BMMSCs were grown in cell culture that used a growth medium that contained a steroid drug called dexamethasone and ascorbic acid phosphate. These chemicals caused the BMMSCs to grow in the form of clusters of cells called “cell aggregates” that could be scraped off mechanically and readily transplanted onto the wounds without the need for any scaffold.  These cell aggregates grow as sheets of cells that can act as a kind of patch made from healing MSCs that can be easily and readily applied to a wound or other lesion.  In a second group of rats, the same number of GFP+BMMSCs was topically administered around the wound. In the third group of rats, the BMMSCs were given intravenously through tail vein. All three groups of rats received the same number of BMMSCs. Samples from the bed of the wounds were taken at different time points, and the morphological, histological and molecular characteristics of the wounds were analyzed and compared.

(A) The rim of aggregate curled a little on dish bottom. (B) GFP+BMMSCs in the aggregate gave green fluorescence under 509 nm excitation light. (C) The whole aggregate was scratched off the dish. (D) HE staining revealed a certain thickness of the aggregate with cells in it (Bar = 20 nm). (E) RT-PCR showed that BMMSC aggregate presented significantly higher expression of TGF-β and collagen I but had a similar VEGFα expression with normal cultured cells. (N-C: normal cultured cells; A-C: Aggregate cells; **p < 0.05 is considered statistically different.)
(A) The rim of aggregate curled a little on dish bottom. (B) GFP+BMMSCs in the aggregate gave green fluorescence under 509 nm excitation light. (C) The whole aggregate was scratched off the dish. (D) HE staining revealed a certain thickness of the aggregate with cells in it (Bar = 20 nm). (E) RT-PCR showed that BMMSC aggregate presented significantly higher expression of TGF-β and collagen I but had a similar VEGFα expression with normal cultured cells. (N-C: normal cultured cells; A-C: Aggregate cells; **p < 0.05 is considered statistically different.)

According to the results, the BMMSCs administered in cell-aggregates produced the highest expression of pro-healing genes than the other methods. Also animals treated with the BMMSC cell aggregates also showed better vascularization and more regular dermal collagen deposition than the other two groups of rats.

(A,B) Wound bed size and vascularization state in BMMSC-transplanted rats with each control at 4-week post-operation. Yellow dashed circle outside and the dashed line inside showed the original wound size and the left wound bed respectively; (C) Quantification of wound bed size revealed that rats of C-ag group had the smallest wound bed left at 4W. p1 = 0.000, p2 = 0.001, n = 14; (D) Quantification of capillary number revealed that C-ag group models enjoyed the highest capillary density followed by models of Top-ad group and Int-ad group (p1 = 0.001, p2 = 0.000, p3 = 0.000, n = 15).
(A,B) Wound bed size and vascularization state in BMMSC-transplanted rats with each control at 4-week post-operation. Yellow dashed circle outside and the dashed line inside showed the original wound size and the left wound bed respectively; (C) Quantification of wound bed size revealed that rats of C-ag group had the smallest wound bed left at 4W. p1 = 0.000, p2 = 0.001, n = 14; (D) Quantification of capillary number revealed that C-ag group models enjoyed the highest capillary density followed by models of Top-ad group and Int-ad group (p1 = 0.001, p2 = 0.000, p3 = 0.000, n = 15).
(A) HE staining (top, 10×) of 4-week samples showed epithelialization in three BMMSC transplanted groups while not in all their controls. Masson trichrome staining (bottom, 20×) of dermal layer showed a superior collagen deposition with certain direction and thicker bundle for C-ag group and Top-ad group to that of Int-ad group, while the collagen disposition of control groups samples was short without certain direction; (B) RT-PCR confirmed that the samples of C-ag group and the Top-ad group presented the highest collagen I expression among groups and followed by Int-ad group (p1 > 0.05, p2 < 0.05).
(A) HE staining (top, 10×) of 4-week samples showed epithelialization in three BMMSC transplanted groups while not in all their controls. Masson trichrome staining (bottom, 20×) of dermal layer showed a superior collagen deposition with certain direction and thicker bundle for C-ag group and Top-ad group to that of Int-ad group, while the collagen disposition of control groups samples was short without certain direction; (B) RT-PCR confirmed that the samples of C-ag group and the Top-ad group presented the highest collagen I expression among groups and followed by Int-ad group (p1 > 0.05, p2 < 0.05).

Detection of inflammatory cells as ascertained by immunofluorescence staining of inflammatory cells also revealed that the duration of inflammation in the cell-aggregate-treated group was significantly shorter than the other two groups. These results were corroborated by RT-PCR experiments that measured the expression of pro-inflammatory genes in the wound tissue.

RT-PCR showed the expression profile of inflammatory cytokines TNF-α (A, p1  0.05, p2 > 0.05, p3 < 0.05) and immune-regulating gene iNOS (C, p1 < 0.05, p2 < 0.05). Wound bed tissues of C-ag and Top-ad group expressed lower level of TNF-α and IL-1β, which were significantly higher in Control groups. Tissue of C-ag group expressed highest level of iNOS among groups.
RT-PCR showed the expression profile of inflammatory cytokines TNF-α (A, p1 < 0.05, p2 < 0.05, p3 < 0.01) and IL-1β (B, p1 > 0.05, p2 > 0.05, p3 < 0.05) and immune-regulating gene iNOS (C, p1 < 0.05, p2 < 0.05). Wound bed tissues of C-ag and Top-ad group expressed lower level of TNF-α and IL-1β, which were significantly higher in Control groups. Tissue of C-ag group expressed highest level of iNOS among groups.

In situ immunofluorescence staining also demonstrated higher rates of GFP+-cell engraftment in the rats treated with BMMSC cell-aggregates than the other groups.

(A) Immunofluorescence staining on CD45+ lymphocytes on wound bed samples at 4W (counterstained with Hoechst 33342) (Bar = 50); (B) Quantification of CD45+ cell among groups. CD45+ cell infiltration in Top-ad and Int-ad wound bed tissue was heavier than that that in C-ag ones. p1 = 0.003, p2 = 0.000, p3 = 0.405, n = 6; (C) Immunofluorescence staining on GFP+ cell on wound bed samples at 4W (counterstained with Hoechst 33342) (Bar = 50 nm); (D) Quantification of GFP+ cell among groups indicated better engraftment for C-ag group than the other two cell transplanted groups, difference being significant. p1 = 0.001, p2 = 0.000, p3 = 0.135, n = 6.
(A) Immunofluorescence staining on CD45+ lymphocytes on wound bed samples at 4W (counterstained with Hoechst 33342) (Bar = 50); (B) Quantification of CD45+ cell among groups. CD45+ cell infiltration in Top-ad and Int-ad wound bed tissue was heavier than that that in C-ag ones. p1 = 0.003, p2 = 0.000, p3 = 0.405, n = 6; (C) Immunofluorescence staining on GFP+ cell on wound bed samples at 4W (counterstained with Hoechst 33342) (Bar = 50 nm); (D) Quantification of GFP+ cell among groups indicated better engraftment for C-ag group than the other two cell transplanted groups, difference being significant. p1 = 0.001, p2 = 0.000, p3 = 0.135, n = 6.

These data show that not only are BMMSC cell aggregates safe, but they might also stimulate greater cutaneous regeneration for full layer cutaneous wounds than BMMSCs administered by other means.  These successful studies will hopefully be followed by large animal studies to confirm the expandability and efficacy of this technology in larger animals.

Forcing Stem Cells to Make Bone


Researchers in the laboratory of Janet Rubin from the University of North Carolina School of Medicine have discovered that a compound from mold can drive mesenchymal stem cells (MSCs) to become osteoblasts, which are the cells that make bone.

MSCs are found in many different tissues without our bodies, ranging from bone marrow, to fat, to tendons, to liver, muscle, brain, and the heart. MSCs have the ability to readily differentiate into bone, fat, and cartilage, and with a little coaxing in the laboratory, they can also form smooth muscle, blood vessels, and even neurons. The key to using these cells is fine-tuning their differentiation in the clinic to efficiently make one cell type over and above another.

Rubin and her colleagues showed that by treating MSCs with cytochalasin D, the cells overwhelmingly became bone cells (osteoblasts). Furthermore, when cytochalasin D was injected into the bone cavity inside bones, it also triggered the formation of bone.

Rubin commented that the “bone forms quickly. The data and images are so clear; you don’t have to be a bone biologist to see what cytochalasin D does in one week in a mouse.”

Rubin continued: “This is not what we expected. This was not what we were trying to do in the lab. But what we’ve found could become an amazing way to jump-start local bone formation. However, this will not address osteoporosis, which involves bone loss throughout the skeleton.”

Cytochalasins are known to target the major cytoskeletal protein actin. Actin self-assembles to form long chain known as microfilaments, and are involved in such vital cell processes as movement, cell shape, cell extensions, vesicle trafficking, and other essential processes in the cell. Cytochalasins disassemble actin microfilaments, which increases the pool of actin monomers in the cell. Rubin and her team showed that these actin monomers went into the cell nucleus and regulated gene expression. Specifically, they turned on the genes responsible for osteoblasts differentiation.

This a novel use of actin by cells, since actin is not normally known to traffic to the nucleus and affect gene expression.

If Rubin and her group disassembled the actin cytoskeleton but prevented actin from trafficking to the nucleus, the MSCs nerve differentiated into osteoblasts.

Cytochalasin D also worked in live mice to drive the formation of bone.

Because bone formation is largely the same in humans and mice, this research is probably translatable. Even though clinicians may not want to use cytochalasin D in human patients, screening compounds that trigger the transport of monomeric actin into the nucleus might be a good way to induce MSCs to form bone cells.

This work was published in the journal Stem Cells 2015; 33(10:3065.

Fetal Stem Cell Therapy Trial for Brittle Bone Disease


Dr. Cecilia Gӧtherström works as a medical researcher at the Karolinska Institutet in Stockholm, Sweden. Earlier this month, Dr Gӧtherström announced the commencement of the first clinical trial that utilizes fetal stem cell transplants to treat the brittle bone disease, Osteogenesis Imperfecta.

Osteogenesis imperfect (OI) was made famous by the Bruce Willis/Samuel Jackson movie “Unbreakable.” In this movie, Samuel Jackson played a wheel-chair bound savant whose bones were incredibly fragile, but acted as a mentor to Bruce Willis’ character who had a tendency to not become injured despite being in accidents and other traumatic events. Willis becomes a kind of local protector of the weak and innocent in his community under Jackson’s tutelage. I will not give away the surprising ending, but the fact that Jackson’s character had OI and his bones broke so easily put OI in the public’s consciousness.

OI is actually a group of genetic disorders that affects an estimated 6 to 7 per 100,000 people worldwide and prevents the bones from forming properly. This disease results from mutations in the COL1A1, COL1A2, CRTAP, and P3H1 genes. More than 90 percent of all cases of OI result from mutations in the COL1A1 and COL1A2 genes. The COL1A1 and COL1A2 genes encode the type I collagen proteins. Collagen is the most abundant protein in bone, skin, and other connective tissues. Patients with OI have fragile bones that break easily, sometimes with no apparent cause. OI can also cause loose joints, fatigue, early hearing loss, and respiratory problems. Multiple fractures are common, and in severe cases, can occur even before birth. Milder cases may involve only a few fractures over a person’s lifetime.

The publication SelectScience interviewed Dr. Gӧtherström who is the coordinator of this clinical trial that will use stem cell therapy to treat babies diagnosed with OI before they are ever born. Dr Gӧtherström told SelectScience that she and her colleagues selected OI as a disease to attack with stem cell treatment because “no good treatment exists.” Dr. Gӧtherström continued: “OI is a chronic disorder that affects the patient throughout their lifetime with reduced quality of life.” Also, because OI causes poor bone mineralization, fractures and malformation of the bones commences by the time the baby is born. Therefore, physicians can diagnose OI during pregnancy, and once it has been diagnosed, it is crucial to initiate treatment as soon as possible.

Dr. Gӧtherström and her colleagues will infuse stem cells into the fetal bodies of babies afflicted with OI by employing the same protocol that is generally used for blood transfusions during pregnancy. This is a very well-tested technique that carries a very little risk to the mother and her baby. According to Dr. Gӧtherström, there is a theoretical risk of the donor cells acquiring mutations that causing cancer in the mother, but this is very unlikely.

Fetal stem cell therapy has some benefits over other types of stem cell therapy. According to Dr. Gӧtherström, “Fetuses do not have a fully developed immune system, so the donor cells may have a better engraftment potential.” Also, fetal Mesenchymal Stem Cells (MSC) have a far better ability to form bone tissue than adult stem cells.

“If this proves to be safe and efficient, we will explore other disorders that can be treated prenatally, such as other skeletal dysplasias, or metabolic disorders,” Dr Gӧtherström explained. The success of this trial could open up new avenues for prenatal therapies to become more common. Dr. Gӧtherström believes that prenatal diagnosis of similar chronic disorders will shift, from delaying or slowing down the onset of a condition to actually treating it.

Regenerating Whole Teeth With A Tissue-Engineered Scaffold


As tissues go, teeth are relatively simple. They only consist of a few cell types, arranged in a rather straight-forward manner. Therefore, regenerating teeth, while more difficult than it seems, should represent a tractable problem for stem cell biologists and tissue engineers. While some progress has been made, tooth regeneration procedures will require more fine-tuning before they will be hailed as successful.

Tzong-Fu Kuo and others from the School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan have examined the feasibility of whole-tooth regeneration in minipigs. Kuo and his group used a tissue-engineered tooth germ-like construct.

To construct their tooth germ constructs, Kuo and his colleagues extracted dental pulp from upper incisors, canines, premolars, and molars from mature miniature pigs. They grew the dental pulp tissue in culture in order to expand the faster-growing dental pulp stem cells (DPSCs) that can outgrowth everything else from the pulp in culture. They differentiated the DPSCs into odontoblasts, which make the dentine of the tooth, and osteoblasts, which make bone. Kuo’s team also acquired gingival epithelial cells from the gums of the minipigs.

Next the gum epithelial cells, odontoblasts, and osteoblasts were implanted onto the surface (upper, and lower layers, respectively), of a bioactive scaffold. This scaffold had the odontoblasts inside, the osteoblasts outside, and the gum epithelial cells outside the osteoblasts. Then Kuo and his coworkers transplanted these seeded bioactive scaffolds into the tooth sockets of the lower jaw of a minipig whose lower first and second molar tooth germs were removed.

13.5 months after the scaffolds were implanted, seven of eight pigs had formed two new teeth that had crowns, roots, and pulp. When the newly-formed teeth were extracted and sectioned, they had enamel-like tissues, dentin, cementum, odontoblasts, and periodontal tissues.

A fascinating finding in this study was that all the pigs, without exception, had regenerated molar teeth regardless of the original tooth from which the DPSCs were isolated. As an important control, minipigs that had their tooth germs removed or received empty scaffolds did not develop teeth.

This study from Kuo’s laboratory showed that implantation of a tooth germ-like structure can produce a complete tooth can do so successfully and efficiently. This study also established that the location of the implant seemed to deeply influence the morphology of the regenerated tooth.

Partial Repair of Full-Thickness Rotator Cuff Tears By Guided Application of Umbilical Cord Blood Mesenchymal Stem Cells


Baseball players, weight lifters, tennis players, basketball players, and other athletes have experienced the pain and frustration of a rotator cuff injury. The rotator cuff is the capsule that surrounds the shoulder joint, in combination with the fused tendons that support the arm at the shoulder joint. A tear in any of these tendons constitute a rotator cuff tear, and it is painful, and debilitating. Furthermore, rotator cuff tears are notoriously slow healing, if they heal at all.

The main option for a rotator cuff tear is microsurgical repair of the tendon. However, as Christopher Centeno at the Regenexx blog points out, sewing together atrophied tissue does not make a lot of sense, and consequently, rotator cuff repairs by means of microsurgery can have a high percentage of re-tearing. Is there a better way?

In the journal Stem Cells and Translational Medicine, Dong Rak Kwon and his two colleagues, Gi-Young Park and Sang Chui Lee, from the Catholic University of Daugu School of Medicine in Daegu, Korea have reported the results of treating whole-thickness rotator cuff tears in rabbits with human umbilical cord blood mesenchymal stem cells (UCB-MSCs). The results are quite interesting.

Kwon and his colleagues broke a colony of New Zealand White rabbits into three groups and surgically subjected all animals to full-thickness tears in the subscapularis tendon. Because rabbits are four-legged creatures, such tears severely compromise their ability to walk, and Kwon and his team measured the ability of these rabbits to walk and the speed at which they walked. All three groups of rabbits showed about the same ability to walk: they walked at about the same speed at for the same distance before giving up.

Human umbilical cord blood-derived mesenchymal stem cell (MSC) and ultrasound images. (A): Human umbilical cord blood-derived MSCs. (B): Injection was made in the left shoulder subscapularis (SCC) full-thickness tears under ultrasound guidance. (C): Longitudinal ultrasound image showed the needle (arrows) in the left shoulder SCC of the rabbit. Abbreviations: S, mesenchymal stem cell; T, tendon.
Human umbilical cord blood-derived mesenchymal stem cell (MSC) and ultrasound images. (A): Human umbilical cord blood-derived MSCs. (B): Injection was made in the left shoulder subscapularis (SCC) full-thickness tears under ultrasound guidance. (C): Longitudinal ultrasound image showed the needle (arrows) in the left shoulder SCC of the rabbit. Abbreviations: S, mesenchymal stem cell; T, tendon.

The first group of rabbits received injections of UCB-MSCs into their rotator cuffs. These injections were guided by ultrasound so that Kwon and his colleagues were able to place the stem cells directly on the damaged tendons. The second group of rabbits received injections of hyaluronic acid (HA), which is a component of connective tissue and the synovial fluid within bursal sacs that surround and lubricated some our joints. The third group received injections of sterile saline into their joints. The animals were then examined four weeks later.

shoulder-joint

The HA- and saline-injected animals showed few changes, but the UCB-MSC-injected animals were able to walk almost twice as far as the other rabbits and almost twice as fast. When the joint tissue of these animals was examined in detail, the HA and saline-injected animals still had full-thickness rotator cuff tears, although the HA-injected animals showed more healing that then the saline-injected rabbits. When the UCB-MSC-injected animals were examined, seven of the ten animals have rotator cuffs that had healed so that the tears could be classified as partial-thickness tears rather than full-thickness tears. Furthermore, a more detailed examination of these joint revealed that they showed regeneration of the tendon and the production of tough, high-quality collagen I.

Gross morphological (A–F) and histological (G–I) findings of the subscapularis tendons in groups 1, 2, and 3. The polygon in each of the first six images depicts the area of the full-thickness subscapularis tendon tear. (A–C): Pretreatment images. (D–F): Posttreatment images. (G): Parallel arrangement of hypercellular fibroblastic bundles (arrow) was noted in group 1. (H, I): Histological findings in groups 2 and 3 showed absence of fiber bundles. Group 1 received a 0.1-ml injection of MSCs; group 2, 0.1 ml of HA; group 3, 0.1 ml of saline. Hematoxylin-and-eosin stain, ×40. Abbreviations: MSC, human umbilical cord blood-derived mesenchymal stem cell; HA, hyaluronic acid; SSC, subscapularis muscle.
Gross morphological (A–F) and histological (G–I) findings of the subscapularis tendons in groups 1, 2, and 3. The polygon in each of the first six images depicts the area of the full-thickness subscapularis tendon tear. (A–C): Pretreatment images. (D–F): Posttreatment images. (G): Parallel arrangement of hypercellular fibroblastic bundles (arrow) was noted in group 1. (H, I): Histological findings in groups 2 and 3 showed absence of fiber bundles. Group 1 received a 0.1-ml injection of MSCs; group 2, 0.1 ml of HA; group 3, 0.1 ml of saline. Hematoxylin-and-eosin stain, ×40. Abbreviations: MSC, human umbilical cord blood-derived mesenchymal stem cell; HA, hyaluronic acid; SSC, subscapularis muscle.

Collagen I is the tough material that makes tendon. When rotator cuff surgeries fail, it can be for a variety of reasons, such as poor blood supply, intrinsic tendon degeneration, fatty infiltration, or muscle atrophy (see UG Longo, et al., British Medical Bulletin 2011, 98:31-59).

Histological micrographs of tissue from group 1 rabbits. (A): Newly regenerated tendons are shown in the blue-stained fibers (black arrow; Masson’s trichrome stain; magnification, ×12.5). (B): Regenerated tendon fibers (yellow arrowhead; Masson’s trichrome stain; magnification, ×250) are connected to adjacent M fibers. (C): The regenerated tendon fibers (black arrow) stained with anti-type 1 collagen antibody. The defect was reconstructed with human umbilical cord blood-derived mesenchymal stem cells (magnification, ×100). Abbreviation: M, muscle.
Histological micrographs of tissue from group 1 rabbits. (A): Newly regenerated tendons are shown in the blue-stained fibers (black arrow; Masson’s trichrome stain; magnification, ×12.5). (B): Regenerated tendon fibers (yellow arrowhead; Masson’s trichrome stain; magnification, ×250) are connected to adjacent M fibers. (C): The regenerated tendon fibers (black arrow) stained with anti-type 1 collagen antibody. The defect was reconstructed with human umbilical cord blood-derived mesenchymal stem cells (magnification, ×100). Abbreviation: M, muscle.

However, tendon failures after surgery usually result from the production of collagen III, which is mechanically weaker than collagen I, instead of collagen I (see MF Pittenger, et al., Science 1999, 284: 143-147; V Rocha, et al., New England Journal of Medicine 2000, 342: 1846-1854). None of the animals in the other groups showed any sign of collagen I production.

This experiment shows that full thickness tears in the subscapularis tendon of the rotator cuff of rabbits, which is functionally similar to the supraspinatus in humans (see figure below), can be partially healed by the ultrasound-guided infusion of UCB-MSCs.

th48RY4PHI

If larger numbers of UCB-MSCs were implanted, it is possible that the tears would have been completely repaired. Also, it is possible that partial tears can be completely repaired by this procedure, but clearly more work is required.

Other questions also remain besides the optimal dose of the cells. What sized tears can be regenerated by this procedure? What immobilization procedures are appropriate after the stem cell injections and for how long? What are the most effective rehabilitation techniques after the surgery? These are all questions that are amenable to research so take heart athletes; a better cure is slowly, but surely on its way.

Combining Umbilical Cord Cells with Hyaluronic Acid Improves Heart Repair After a Heart Attack


Umbilical cord blood cells have an advantage over bone marrow or peripheral blood cells in that aging, systemic inflammation, and stress or damage caused by cell processing procedures can potentially compromise and diminish the regenerative capability of these cells. This problem is particularly acute in the case of treating patients who have recently suffered a heart attack, since transplanted cells experience a rather hostile environment that kills off most cells. Additionally, blood flow through the heart tends to wash out infused cells, which further decreases any regenerative activities the cells might have otherwise exerted.

With this in mind, Patrick Hsieh and his colleagues at the Academia Sinica, in Taipei, Taiwan tested if ability of human cord blood mononuclear cells (CB-MNCs) injected into the heart in combination with a hyaluronan (HA) hydrogel could extend the regenerative abilities of these cells in a pig model. HA is a common component of connective tissue, and, in general, it is very well tolerated by patients and implanted cells. Furthermore, it has the added bonus of shielding cells from a hostile environment and preventing them from being washed out of the heart.

Hsieh used a total of 34 minipigs and divided them into five different groups. One group was the sham operation group in which minipigs received surgical incisions but no heart attack was induced. The second group had heart attacks surgically induced and received infusions of normal saline solutions. The third group of minipigs also experienced heart attacks, and had HA injected into the heart walls. The fourth group also suffered heart attacks and received injections of human umbilical cord stem cells into their heart walls. The fifth group experienced heart attacks and received injections of both HA and human umbilical cord blood cells. The animals were kept and examined two months after surgery.

Two months after the surgery, the minipigs that received injections of human umbilical cord blood cells plus HA showed the highest left ventricle ejection fraction (51.32% ± 0.81%). This is significant when compared to 42.87% ± 0.97%, for the group that received injections of normal saline, 44.2% ± 0.63% for the group that received injections of HA alone, and 46.17% ± 0.39% for the group that received injections of umbilical cord blood cells only. Additionally, hearts from minipigs that received cord blood cells plus HA improved the systolic and diastolic function significantly better than the other experimental groups. Injections of either cord blood cells alone or in combination with HA significantly decreased the scar area and promoted the formation of new blood vessels in the infarcted region. In general, this study suggests that combined infusion of umbilical cord blood cells and HA improves the function of the heart after a heart attack and might prove to be a promising treatment option of heart attack patients.

This is a preclinical study, but it is a preclinical study in a larger animal model system. Umbilical cord blood cells have a demonstrated ability to induce healing in the heart after a heart attack. However, the combination of these cells with HA almost certainly significantly increases cell retention in the heart, thereby significantly improving cardiac performance, and preventing cardiac remodeling. Therefore, using healthy cells donated from another source to replace damaged or moribund cells may be a better option to treat a heart patient and repair their sick heart.

This work appeared in Stem Cells Trans Med November 2015, doi: 10.5966/sctm.2015-0092

Muscular Dystrophy is a Stem Cell-Based Disease


Michael Rudnicki, who has done pioneering work in muscle stem cell biology and muscle regeneration, and whose work has been featured several times on this blog, has struck again. Rudnicki, who serves as director of the Regenerative Medicine Program at The Ottawa Hospital and a professor at the University of Ottawa and holds the prestigious Canada Research Chair in Molecular Genetics, teamed up with workers from the Sprott Centre for Stem Cell Research and the Sinclair Centre for Regenerative Medicine to investigate the role of muscle-specific stem cells in patients who suffer from Duchenne muscular dystrophy. This new earth-shaking study, which was published in the journal Nature Medicine (November 16, 2015), has changed the way we think about muscular dystrophy and will almost certainly force people to rethink the treatments and cures for this dreadful disease.

According to this new study, Duchenne muscular dystrophy directly affects muscle stem cells, and is, largely a disease of muscle stem cells.

Rudicki said: “For nearly 20 years, we’ve thought that the muscle weakness observed in patients with Duchenne muscular dystrophy is primarily due to problems in their muscle fibers, but our research shows that it is also due to intrinsic defects in the function of their muscle stem cells. This completely changes our understanding of Duchenne muscular dystrophy and could eventually lead to far more effective treatments.”

Muscular dystrophy comes in several different forms, but the predominant sign of muscular dystrophy is progressive muscle weakness. Altogether, muscular dystrophy refers to a group of more than 30 genetic diseases, all of which cause progressive weakness and degeneration of skeletal muscles used during voluntary movement. Approximately half of all who suffer from muscular dystrophy have Duchenne muscular dystrophy (DMD). Because muscular dystrophy results from mutations in the dystrophin gene, which is on the X chromosome, the vast majority of muscular dystrophy patients are male. Girls can be carriers of muscular dystrophy and can be mildly affected.

Interestingly, somewhere around one-third of boys who suffer from DMD have no family history of the disease. Because the dystrophin gene is so large, spontaneous mutations in it are probably relatively common.

The signs and symptoms typically appear between the ages of 2 and 3, and may include frequent falls, difficulty getting up from a lying or sitting position, trouble running and jumping, a strange, shuffling way of walking or having a tendency to walk on their toes, calf muscles that are abnormally large, muscle pain and stiffness, and some learning disabilities.

Becker muscular dystrophy (BMD) has signs and symptoms that are largely similar to those of DMD, but BMD tends to be a milder form of the disease that progresses more slowly. Symptoms typically begin in the teens but, some patients may not experience symptoms until their mid-20s and some may not experience symptoms until later.

There are also several different types of muscular dystrophy-type diseases. Steinert’s disease or myotonic muscular dystrophy, which is characterized by an inability to relax muscles at after contractions, is the most common form of adult-onset muscular dystrophy. The first muscles to be affected are the muscles of the face and neck. Facioscapulohumeral muscular dystrophy affects the muscles of the face and shoulders, where symptoms first begin. When patients with facioscapulohumeral raise their arms, their shoulder blades noticeably protrude. This disease may first manifest itself in children, teenagers as late as age 40. This disease tends to affect one side more than the other.

Limb-girdle muscular dystrophy affects the muscles of the shoulders and hips. There are over 20 inherited forms of this disease, and because this condition is not due to mutations in dystrophin, but to mutations in genes that encode proteins that interact with dystrophin, the inheritance of limb-girdle muscular dystrophy is not sex-linked. Some forms of this disease are recessive and some are dominant. Patients with this type of muscular dystrophy usually trip more often because they have trouble raising the front part of their feet. Some autosomal recessive forms of the disorder are now known to be due to a deficits in proteins called sarcoglycans or dystroglycan.

Congenital muscular dystrophy is extremely varible and is probably a cluster of several different diseases caused by mutations in different genes. Some of types of congenital muscular dystrophy show sex-linked inheritance while others do not. Most cases of congenital muscular dystrophy result from the absence of a muscle protein called merosin, which is found in the connective tissue that surrounds muscle fibers. Other types of congenital muscular dystrophy have normal merosin and still others result from abnormal motor neuron migration. Clinically, this disease is also extremely variable and can manifest itself at birth or before age 2, progress slowly or rapidly, and cause mild disability or severe impairment.

Muscular dystrophy affects all ethnic groups and occurs globally. It affects around 1 in every 3,500 to 6,000 male births each year in the United States.  DMD affects approximately one in 3,600 boys.

Because DMD results from mutations in the dystrophin gene, the vast majority of muscular dystrophy research was based on a simple model in which the Dystrophin protein played a structural role in the structural integrity of muscle fibers. Abnormal versions of the Dystrophin protein caused the muscle fibers to become damaged and die as a result of contraction.  Dystrophin anchors the cytoskeleton of the muscle fibers, which are essential for muscle contraction, to the muscle cell membrane, and then to the extracellular matrix outside the cell that serves as a foundation upon which the muscle cells are built.

gb-2001-2-4-reviews3006-3

However in this current study, Rudnicki and his team discovered that muscle stem cells also express the dystrophin protein. This is a revelation because Dystrophin was thought to be protein that ONLY appeared in mature muscle. However, in this study, it became exceedingly clear that in the absence of Dystrophin, muscle stem cells generated ten-fold fewer muscle precursor cells, and, consequently, far fewer functional muscle fibers. Dystrophin is also a component of a signal transduction pathway that allows muscle stem cells to properly ascertain if they need to replace dead or dying muscle.  Muscle stem cells repair the muscle in response to injury or exercise by dividing to generate precursor cells that differentiate into muscle fibers.

“Muscle stem cells that lack dystrophin cannot tell which way is up and which way is down,” said Dr. Rudnicki. “This is crucial because muscle stem cells need to sense their environment to decide whether to produce more stem cells or to form new muscle fibres. Without this information, muscle stem cells cannot divide properly and cannot properly repair damaged muscle.”

Even though Rudnicki used mice as a model system in these experiments, the Dystrophin protein is highly conserved in most vertebrate animals. Therefore, it is highly likely that these results will also apply to human muscle stem cells.

Treatment for DMD patients is limited to steroids to decrease muscle inflammation and muscle cell death, and physical therapy to increase muscle use and prevent muscle atrophy. These approaches only delay the progression of the disease and alleviate symptoms. Gene therapy experiments and trials are in progress and even show some promise, but Rudnicki’s work tell us that gene therapy approaches must target muscle stem cells as well as muscle fibers if they are to work properly.

“We’re already looking at approaches to correct this problem in muscle stem cells,” said Dr. Rudnicki. “I’m not sure if we will ever cure Duchenne muscular dystrophy, but I’m very hopeful that someday in the future, we will have new therapies that correct the ability of muscle stem cells to repair the muscles of afflicted patients and turn this devastating, lethal disease into a chronic but manageable condition.”

This paper has received high praise from the likes of Ronald Worton, who was one of the co-discovers of the dystrophin gene with Louis Kunkel in 1987.  Worton later served as Vice-President of Research at The Ottawa Hospital from 1996 to 2007.

“When we discovered the gene for Duchenne muscular dystrophy, there was great hope that we would be able to develop a new treatment fairly quickly,” said Dr. Worton, who is now retired. “This has been much more difficult than we initially thought, but Dr. Rudnicki’s research is a major breakthrough that should renew hope for researchers, patients and families.”