Stem Cell-Based Skin Graft for Severe Burns


Severe wounds are typically treated with full thickness skin grafts. Some new work by researchers from Michigan Tech and the First Affiliated Hospital of Sun Yat Sen University in Guangzhou, China might provide a way to use a patient’s own stem cells to make split thickness skin grafts (STSG). If this technique pans out, it would eliminate the needs for donors and could work well for large or complicated injury sites.

This work made new engineered tissues were able to capitalize on the body’s natural healing power. Dr. Feng Zhao at Michigan Tech and her Chinese colleagues used specially engineered skin that was “prevascularized, which is to say that Zhao and other designed it so that it could grow its own veins, capillaries and lymphatic channels.

This innovation is a very important one because on of the main reasons grafted tissues or implanted fabricated tissues fail to integrate into the recipient’s body is that the grafted tissue lacks proper vascular support. This leads to a condition called graft ischemia. Therefore, getting the skin to form its own vasculature is vital for the success of STSG.

STSG is a rather versatile procedure that can be used under unfavorable conditions, as in the case of patients who have a wound that has been infected, or in cases where the graft site possess less vasculature, where the chances of a full thickness skin graft successfully integrating would be rather low. Unfortunately, STSGs are more fragile than full thickness skin grafts and can contract significantly during the healing process.

In order to solve the problem of graft contraction and poor vascularization, Zhao and others grew sheets of human mesenchymal stem cells (MSCs) and mixed in with those MSCs, human umbilical cord vascular endothelial cells or HUVECs. HUVECs readily form blood vessels when induced, and growing mesenchymal stem cells tend to synthesize the right cocktail of factors to induce HUVECs to form blood vessels. Therefore this type of skin is truly poised to form its own vasculature and is rightly designated as “prevascularized” tissue.

Zhao and others tested their MSC/HUVEC sheets on the tails of mice that had lost some of their skin because of burns. The prevascularized MSC/HUVEC sheets significantly outperformed MSC-only sheets when it came to repairing the skin of these laboratory mice.

When implanted, the MSC/HUVEC sheets produced less contracted and puckered skin, lower amounts of inflammation, a thinner outer skin (epidermal) thickness along with more robust blood microcirculation in the skin tissue. And if that wasn’t enough, the MSC/HUVEC sheets also preserved skin-specific features like hair follicles and oil glands.

The success of the mixed MSC/HUVEC cell sheets was almost certainly due to the elevated levels of growth factors and small, signaling proteins called cytokines in the prevascularized stem cell sheets that stimulated significant healing in surrounding tissue. The greatest challenge regarding this method is that both STSG and the stem cell sheets are fragile and difficult to harvest.

An important next step in this research is to improve the mechanical properties of the cell sheets and devise new techniques to harvest these cells more easily.

According to Dr. Zhao: “The engineered stem cell sheet will overcome the limitation of current treatments for extensive and severe wounds, such as for acute burn injuries, and significantly improve the quality of life for patients suffering from burns.”

This paper can be found here: Lei Chen et al., “Pre-vascularization Enhances Therapeutic Effects of Human Mesenchymal Stem Cell Sheets in Full Thickness Skin Wound Re-pair,” Theranostics, October 2016 DOI: 10.7150/ thno.17031.

Inhibition of AKT Kinase Increases Umbilical Cord Blood Growth in Culture and Engraftment in Mice


Dr. Yan Liu from the Department of Pediatrics and the Herman B Wells Center for Pediatric Research at the Indiana University School of Medicine in Indianapolis, Indiana and his colleagues have increased the engraftment efficiency of umbilical cord hematopoietic (blood cell-making) stem cells in immunodeficient mice. The technique developed by Lui and his colleagues is simple and increases the proliferation of umbilical cord blood hematopoietic stem cells (UCB-HSCs) in culture, which potentially solves several long-standing problems with umbilical cord blood transplantation.

Umbilical cord blood has been used in the clinic for more than 40 years in hematopoietic stem cell transplantation therapies to treat patients with bone marrow diseases or to reconstitute the bone of those cancer patients who had to have theirs wiped out to cure their leukemia or lymphoma.

One of the problems with umbilical cord blood transplantations, however, is the small amount of material in a typical cord blood collection and, therefore, the small number of hematopoietic stem cells (HSCs) available for transplantation. To ameliorate these shortcomings, hematologists will transplant more than one lot of cord blood (a so-called “double umbilical cord blood transplantation”), which, unfortunately, also increases the risk of immunological rejection (so-called Graft Versus Host response).

A second strategy to get around the low numbers of UCB-HSCs is to expand them in culture, which has proven difficult. However, some experiments have given us more than enough hope to suspect this this is a feasible option (see Flores-Guzmán P, et al., Stem Cells Transl Med. 2013 Nov;2(11):830-8; Bari S., et al., Biol Blood Marrow Transplant. 2015 Jun;21(6):1008-1; Pineault N, Abu-Khader A. Exp Hematol. 2015 Jul;43(7):498-513).

Dr. Lui and his coworkers wanted to examine the role of the signaling protein AKT (also known and protein kinase B) in UCB-HSC expansion in culture. To this end, they used silencing RNAs to knock-down AKT gene expression in cultured UCB-HSCs. AKT knock-down enhanced UCB-HSC quiescence and growth in culture. In a separate experiment, Lui and others treated human UCB-HSCs (so-called CD34+ cells) with a chemical that specifically inhibits AKT activity. Then they subjected these cells to a battery of tests in culture and in laboratory mice.

The results were astounding.  Treatment of human UCB-HSCs did not affect the identity of the HSCs and enhanced their ability to form isolated colonies in cell culture growth tests known as “replating assays.”  Additionally, the short-term inhibition of AKT with drugs also enhanced the ability of UBC-HSCs to repopulate the bone marrow of immunodeficient mice.

ubc-hsc-engraftment-improved-with-akt-inhibition

In summary, inhibition of AKT increases human UCB-HSC quiescence, growth potential, and engraftment in laboratory mice.

These interesting pre-clinical results suggest that AKT inhibitor can increase the expansion of UCB-HSCs in culture and potential increase their tendency of these cells to engraft in patients.

Factor From Umbilical Cord Blood Could Treat Harmful Inflammation


Umbilical cord blood turns out to have a factor that can potentially fight inflammation, according to scientists at the University of Utah School of Medicine. This study was published online Sept. 6, 2016, in The Journal of Clinical Investigation.

“We found something we weren’t expecting, and it has taken us to new strategies for therapy that didn’t exist before,” says Guy Zimmerman, M.D., a professor of internal medicine at the University of Utah School of Medicine, who was also the senior author of this work. Dr. Zimmerman collaborated with associate professor of pediatrics, Christian Con Yost, M.D., and their colleagues for this work.

Inflammation is well-known to anyone who has whacked their leg, been stung by a bee or a wasp, or anyone who over-stressed their muscles. The redness, heat pain, and swelling are signs that the body is cleaning up damaged cells and their debris, fighting invading microorganisms, and beginning the healing process. However, under certain circumstances, inflammation can go overboard and turn against us and seriously and chronically damage healthy tissues. Out-of-control inflammation is probably the culprit behind several different conditions ranging from rheumatoid arthritis to sepsis. In fact, the inflammatory overreaction to infections is one of the most common causes of hospital deaths.

Dr. Yost and his coworkers successfully isolated a cord blood factor, called “neonatal NET inhibitory factor” or nNIF. This name comes from the ability of this factor to inhibit “NETs” or neutrophil extracellular traps. NETs or neutrophil extracellular traps are composed of processed chromatin bound to granular and selected cytoplasmic proteins that are released by white blood cells called neutrophils. NETs seem to be a kind of last resort that neutrophils turn to in order to control microbial infections. Even though NETs usually help our bodies ward off infectious bacteria and viruses, they can also damage blood vessels and organs during sepsis.

nets

As physicians who have treated critically ill patients suffering from out-of-control inflammation, Drs. Zimmerman and Yost recognized the therapeutic potential of nNIF. “We knew we were onto something that could be very meaningful,” recalls Yost.

To test if this cord blood-based factor could control sepsis, Zimmerman and Yost and others treated groups of mice that suffered from laboratory-induced inflammatory disease. In the absence of treatment, only 20 percent of the mice survived longer than two to four days. However, 60% of those mice treated with nNIF survived after the same amount of time.

“Sepsis is a case where the body’s reaction to infection is lethal,” says Yost. “nNIF is offering insights into how to keep the inflammatory response within prescribed limits.” He adds that they will carry out additional studies to test the therapeutic properties of nNIF.

Anti-Inflammatory Agent Isolated From Umbilical Cord Blood Infection fighting cells from umbilical cord blood (left) and circulating blood three days after birth (right) from the same prematurely born baby. Umbilical cord blood has high levels of a factor, called neonatal NET inhibitory factor (nNIF), which inhibits a specific inflammatory response called NETs. Within two weeks after birth, nNIF levels drop and NETs can form. True to their name, they consist of a net-like substance that traps infectious agents like bacteria, as seen on the right. nNIF is showing promise as a potential therapy against harmful inflammation and sepsis.
Anti-Inflammatory Agent Isolated From Umbilical Cord Blood
Infection fighting cells from umbilical cord blood (left) and circulating blood three days after birth (right) from the same prematurely born baby. Umbilical cord blood has high levels of a factor, called neonatal NET inhibitory factor (nNIF), which inhibits a specific inflammatory response called NETs. Within two weeks after birth, nNIF levels drop and NETs can form. True to their name, they consist of a net-like substance that traps infectious agents like bacteria, as seen on the right. nNIF is showing promise as a potential therapy against harmful inflammation and sepsis.

nNIF seems to be present for just a brief window of time at the beginning of life. It circulates in cord blood and persists in the baby’s own bloodstream for up to two weeks after birth. However, after two weeks, nNIF disappears and is not found in older babies and is completely absent from the blood of adults. Scientists in Yost’s laboratory also discovered that the placenta also contains a similar, albeit less potent, anti-inflammatory agent. The evanescent nature of these factors possibly indicates that inflammation is under tight control during this time, since the fragility of young babies might make extensive amounts of inflammation deleterious to their health.

“The beginning of life is a delicate balance,” says Yost. “Our work is showing that it is important to have the right defenses, but they have to be controlled.”

Gamida Cell Announces First Patient with Sickle Cell Disease Transplanted in Phase 1/2 Study of CordIn™ as the Sole Graft Source


An Israeli regenerative therapy company called Gamida Cell specializes in cellular and immune therapies to treat cancer and rare (“orphan”) genetic diseases. Gamida Cell’s main product is called NiCord, which provides patients who need new blood-making stem cells in their bone marrow an alternative to a bone marrow transplant. NiCord is umbilical cord blood that has been expanded in culture. In clinical trials to date, NiCord has rapidly engrafted into patients and the clinical outcomes of NiCord transplantation seem to be comparable to transplantation of peripheral blood.

Gamida Cell’s two products, NiCord and CordIn, as well as some other products under development utilize the company’s proprietary NAM platform technology to expand umbilical cord cells. The NAM platform technology has the remarkable capacity to preserve and enhance the functionality of hematopoietic stem cells from umbilical cord blood. CordIn is an experimental therapy for those rare non-malignant diseases in which bone marrow transplantation is the only currently available cure.

Gamida Cell has recently announced that the first patient with sickle cell disease (SCD) has been transplanted with their CordIn product.  Mark Walters, MD, Director of the Blood and Marrow Transplantation (BMT) Program is the Principal Investigator of this clinical trial. The patient received their transplant at UCSF Benioff Children’s Hospital Oakland.

CordIn, as previously mentioned, is an experimental therapy for rare non-malignant diseases, including hemoglobinopathies such as Sickel Cell Disease and thalassemia, bone marrow failure syndromes such as aplastic anemia, genetic metabolic diseases and refractory autoimmune diseases. CordIn potentially addresses a presently unmet medical need.

“The successful enrollment and transplantation of our first SCD patient with CordIn as a single graft marks an important milestone in our clinical development program. We are eager to demonstrate the potential of CordIn as a transplantation solution to cure SCD and to broaden accessibility to patients with rare genetic diseases in need of bone marrow transplantation,” said Gamida Cell CEO Dr. Yael Margolin. “In the first Phase 1/2 study with SCD, the expanded graft was transplanted along with a non-manipulated umbilical cord blood unit in a double graft configuration. In the second phase 1/2 study we updated the protocol from our first Phase 1/2 study so that patients would be transplanted with CordIn as a standalone graft, which is expanded from one full umbilical cord blood unit and enriched with stem cells using the company’s proprietary NAM technology.”

Somewhere in the vicinity of 100,000 patients in the U.S suffer from SCD; and around 200,000 patients suffer from thalassemia, globally. The financial burden of treating these patients over their lifetime is estimated at $8-9M. Bone marrow transplantation is the only clinically established cure for SCD, but only a few hundred SCD patients have actually received a bone marrow transplant in the last ten years, since most patients were not successful in finding a suitable match. Unrelated cord blood could be available for most of the patients eligible for transplantation, but, unfortunately, the rate of successful engraftment of un-expanded cord blood in these patients is low. Therefore, cord blood is usually not considered for SCD patients. Without a transplant, these patients suffer from very high morbidity and low quality of life.

Eight patients with SCD were transplanted in the first Phase 1/2 study performed in a double graft configuration. This study is still ongoing. Preliminary data from the first study will be summarized and published later this year. A Phase 1/2 of CordIn for the treatment of patients with aplastic anemia will commence later this year.

Umbilical Cord Blood Mesenchymal Stem Cells do Not Cause Tumors in Rigorous Tests


Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) have the ability to self-renew and also can differentiate into a wide range of cell types. However, many clinicians and scientists fear that even these very useful cells might cause tumors.

To that end, Moon and colleagues from the Korean Institute of Toxicology have rigorously tested the tendency for hUBC-MSCs to cause tumors. They used a large battery of tests in living organisms and in culture. hUCB-MSCs were compared to MRC-5 and HeLa cells. MRC-5 cells are known to have no ability to cause tumors and HeLa cells have a robust ability to form tumors, and therefore, constitute negative and positive controls,

To evaluate the ability of cells to cause tumors, Moon and others examined the tendency of these cells to grow without being attached to a substratum. This is a hallmark of tumor cells and is called “anchorage-independent growth” (AIG). To assess AIG, the cells were grown in soft agar, which is a standard assay for AIG. hUCB-MSCs and MRC-5 cells formed few colonies in soft agar, but HeLa cells formed a greater number of larger colonies. This indicated that hUCB-MSCs and MRC-5 cells do not show AIG, a common trait of tumorigenic cells.

The next assay implanted these cells into live laboratory animals. hUCB-MSCs were implanted as a underneath the skin of BALB/c-nu mice (nasty creatures – they bite). All the mice implanted with hUCB-MSCs and NRC-5 cells showed any sign of tumors. Both gross and microscopic examination failed reveal any tumors. However, all mice transplanted with HeLa cells developed tumors that were clearly derived from the implanted cells.

These experiments, though somewhat mundane, rigorously demonstrate that hUCB-MSCs do not exhibit tumorigenic potential. This provides further evidence of these cells clinical applications.

The paper appeared in Toxicol Res. 2016 Jul;32(3):251-8. doi: 10.5487/TR.2016.32.3.251.

Genetic Switch to Making More Blood-Making Stem Cells Found


A coalition of stem cell scientists, co-led in Canada by Dr. John Dick, Senior Scientist, Princess Margaret Cancer Centre, University Health Network (UHN) and Professor, Department of Molecular Genetics, University of Toronto, and in the Netherlands by Dr. Gerald de Haan, Scientific Co-Director, European Institute for the Biology of Ageing, University Medical Centre Groningen, the Netherlands, have uncovered a genetic switch that can potentially increase the supply of stem cells for cancer patients who need transplantation therapy to fight their disease.

Their findings were published in the journal Cell Stem Cell and constitute proof-of-concept experiments that may provide a viable new approach to making more stem cells from umbilical cord blood.

“Stem cells are rare in cord blood and often there are not enough present in a typical collection to be useful for human transplantation. The goal is to find ways to make more of them and enable more patients to make use of blood stem cell therapy,” says Dr. Dick. “Our discovery shows a method that could be harnessed over the long-term into a clinical therapy and we could take advantage of cord blood being collected in various public banks that are now growing across the country.”

Currently, all patients who require stem cell transplants must be matched to an adult donor. The donor and the recipient must share a common set of cell surface proteins called “human leukocyte antigens” HLAs. HLAs are found on the surfaces of all nucleated cells in our bodies and these proteins are encoded by a cluster of genes called the “Major Histocompatibility Complex,” (MHC) which is found on chromosome six.

Map of MHC

There are two main types of MHC genes: Class I and Class II.

MHC Functions

Class I MHC contains three genes (HLA-A, B, and C). The three proteins encoded by these genes, HLA-A, -B, & -C, are found on the surfaces of almost all cells in our bodies. The exceptions are red blood cells and platelets, which do not have nuclei. Class II MHC genes consist of HLA-DR, DQ, and DP, and the proteins encoded by these genes are exclusive found on the surfaces of immune cells called “antigen-presenting cells” (includes macrophages, dendritic cells and B cells). Antigen-presenting cells recognize foreign substances in our bodies, grab them and, if you will, hold them up for everyone to see. The cells that usually respond to antigen presentation are immune cells called “T-cells.” T-cells are equipped with an antigen receptor that only binds antigens when those antigens are complexed with HLA proteins.

If you are given cells from another person who is genetically distinct from you, the HLA proteins on the surfaces of those cells are recognized by antigen-presenting cells as foreign substances. The antigen-presenting cells will them present pieces of the foreign HLA proteins on their surfaces, and T-cells will be sensitized to those proteins. These T-cells will them attack and destroy any cells in your body that have those foreign HLA proteins. This is the basis of transplant rejection and is the main reason transplant patients must continue to take drugs that prevent their T-cells from recognizing foreign HLA proteins as foreign.

When it comes to bone marrow transplantations, patients can almost never find a donor whose HLA surface proteins match perfectly. However, if the HLA proteins of the donor are too different from those of the recipient, then the cells from the bone marrow transplant attack the recipient’s cells and destroy them. This is called “Graft versus Host Disease” (GVHD). The inability of leukemia and lymphoma and other patients to receive bone marrow transplants is the unavailability of matching bone marrow. Globally, many thousands of patients are unable to get stem cell transplants needed to combat blood cancers such as leukemia because there is no donor match.

“About 40,000 people receive stem cell transplants each year, but that represents only about one-third of the patients who require this therapy,” says Dr. Dick. “That’s why there is a big push in research to explore cord blood as a source because it is readily available and increases the opportunity to find tissue matches. The key is to expand stem cells from cord blood to make many more samples available to meet this need. And we’re making progress.”

Umbilical cord blood, however, is different from adult bone marrow. The cells in umbilical cord blood are more immature and not nearly as likely to generate GVHD. Therefore, less perfect HLA matches can be used to treat patients in need of a bone marrow transplant. Unfortunately, umbilical cord blood has the drawback of have far fewer stem cells than adult bone marrow. If the number of blood-making (hematopoietic) stem cells in umbilical cord blood can be increased, then umbilical cord blood would become even more useful from a clinical perspective.

There has been a good deal of research into expanding the number of stem cells present in cord blood, the Dick/de Haan teams took a different approach. When a stem cell divides it produces a large number of “progenitor cells” that retain key properties of being able to develop into every one of the 10 mature blood cell types. These progenitor cells, however, have lost the critical ability to self-renew.

Dick and his colleagues analyzed mouse and human models of blood development, and they discovered that a microRNA called miR-125a is a genetic switch that is on in stem cells and controls self-renewal, but gets turned off in the progenitor cells.

“Our work shows that if we artificially throw the switch on in those downstream cells, we can endow them with stemness and they basically become stem cells and can be maintained over the long-term,” says Dr. Dick.

In their paper, Dick and de Haan showed that forced expression of miR-125 increases the number of hematopoietic stem cells in a living animal. Also, miR-125 induces stem cell potential in murine and human progenitor cells, and represses, among others, targets of the MAP kinase signaling pathway, which is important in differentiation of cells away from the stem cell fate. Furthermore, since miR-125 function and targets are conserved in human and mouse, what works in mice might very well work in human patients.

graphical abstract CSC_v9

This is proof-of-concept paper – no human trials have been conducted to date, but these data may be the beginnings of making more stem cells from banked cord blood to cure a variety of blood-based conditions.

Here’s to hoping.

Musashi-2 Protein Increases Number Hematopoietic Stem Cells in Umbilical Cord Blood


Umbilical cord blood infusions save the lives of many children and adults each year. Umbilical cord blood contains hematopoietic stem cells (HSCs) that can replace those lost to anticancer treatments, chemicals, or bone marrow collapse. However, despite their advantages for transplantation, the clinical use of umbilical cord blood is limited by the fact that HSCs in cord blood are found only in small numbers.

Small molecules that enhance hematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified (see Boitano, A. E. et al. Science 329, 1345–1348 (2010), and Fares, I. et al. Science 345, 1509–1512 (2014). Unfortunately, the mechanisms of action or the nature of the pathways they impinge on are poorly understood.

Now a research team from McMaster University’s Stem Cell and Cancer Research Institute have discovered a key protein in the HSC/HSPC regenerative signaling pathway.

Kristin J. Hope and her team have elucidated the role of a protein called Musashi-2 in the function and development of HSCs.

Dr. Hope says that this discovery could help the tens of thousands of patients who suffer from blood-based disorders, including leukemia, lymphoma, aplastic anemia, sickle-cell disease, and more.

“We’ve really shone a light on the way these stem cells work,” she said. “We now understand how they operate at a completely new level, and that provides us with a serious advantage in determining how to maximize these stem cells in therapeutics. With this newfound ability to control over the regeneration of these cells, more people will be able to get the treatment they need.”

Only about five percent of all umbilical cord blood samples contain enough HSCs for a transplant, which is unfortunate because umbilical cord blood is less likely to be rejected by the immune system, because of the immaturity of the cells, and is also rather abundant.

Growing HSCs in culture is a possibility, but this remains a somewhat poorly understood and ill-defined procedure.

Musashi-2 is an RNA-binding protein in cells and was actually named for the Japanese samurai who fought using two swords.

In collaboration with researchers in Dr. Gene Yeo’s lab at the University of California San Diego, Dr. Hope’s lab has found that the Musashi-2 protein plays a pivotal role in controlling stem cell production in human cord blood HSCs. When Musashi-2 levels in HSCs are the knocked down, the cod blood HSCs were no longer able to regenerate the blood system. Conversely, when the levels of Musashi-2 were increased, the number of HSCs in the cord blood sample increased significantly.

The Hope’s group new discovery has identified a new way to tightly control on the development of HSCs. Essentially, Hope and her colleagues have discovered a new way to make more cord blood stem cells in a dish.

In the past, attempts to control HSC function and development has been approached at the level of transcriptional factors. The Hope lab’s approach of directing stem cell function through manipulation of an RNA-binding protein is somewhat novel, and represents a paradigm shift in the way we think about stem cell biology.

“This discovery really highlights the underappreciated role that RNA-binding protein-mediated control has on the properties of stemness in the blood system,” explained Dr. Hope.

This paradigm shift provides new targets for pharmaceuticals that may be able to expand these cells in a safe and targeted manner.

These findings represent an important step forward in surmounting the obstacles associated with stem cell transplants. According to Dr. Hope, the ability to increase the number of available cord blood stem cells has the potential to “mitigate a lot of the problems that arise post-transplantation.” Elaborating further, Dr. Hope explained that stem cells from cord blood are a “safer and more efficient transplant product,” and detailed how their use could reduce the number of patient follow-up visits and treatments required post-transplantation. Streamlining the transplantation process could help to alleviate the stress on the healthcare system and open up space for more transplant patients.