Minneapolis Heart Institute Foundation Tests Stem Cell Combination in Heart Attack Patients


The Minneapolis Heart Institute Foundation has announced a new clinical trial that will examine the ability of a stem cell combination to treat patients with ischemic heart failure.

In patients who have suffered from former heart attacks, clogged coronary blood vessels and heart muscle that hibernates can result in a heart that no longer works well enough to support the life of the patient. The lack of blood flow to vital parts of the heart and an increasing work load can result is so-called “Ischemic heart failure.” Such heart failure after a previous heart attack is one of the leading cause of death and morbidity in the world. According to the World Health Organization, ischemic heart disease affects more than 12% of the world’s population.

Stem cell therapy has been tested as a potential treatment for ischemic heart disease. Despite flashes of remarkable success, the overall efficacy of these treatments has been relatively modest. Most clinical trials have used the patient’s own bone marrow cells. In this case, the cell population is very mixed and it might not even be stem cell populations in the bone marrow that are eliciting recovery. Also, the quality of each patient’s bone marrow is probably quite varied, which makes standardizing such experiments remarkably difficult. Other clinical trials have used bone marrow derived mesenchymal cells [MSCs]. Several clinical trials with MSCs have seen some improvement in patients. MSCs seem to induce the formation of new blood vessels and also seem to induce endogenous stem cell populations in the heart to come to life and fix the heart. Other trials have used cardiac stem cells (CSCs) that were derived from biopsies of the heart. Even though fewer clinical trials have tested the efficacy of CSCs in human patients, the trials that have been conducted suggest that these cells can truly regenerate damaged heart tissue.

The Minneapolis Heart Institute Foundation® (MHIF) has announced a new clinical trial which will examine the combination of MSCs with CSCs to treatment patients with ischemic heart failure. This clinical trial, the CONCERT study, will be led by Principal Investigator Jay Traverse, MD. The CONCERT study will implant MSC’s and CSC’s in order to determine if the combination would be more successful than using either alone based on pre-clinical studies in swine demonstrating an enhanced synergistic effect of the combination.

CONCERT is sponsored by the National Institutes of Health and the Cardiovascular Cell Therapy Research Network (CCTRN), of which MHIF is a charter member. This will be a phase II clinical trial, which means that the focus of this leg of the study is to assess the relative safety of CSCs and MSCs, delivered either alone, or in combination, in comparison to placebo, and to measure the efficacy of the stem cell cocktail as well. To that end, researchers will measure and note any change or improvement in left ventricular (LV) function by cardiac MRI as well as changes in various clinical outcomes (survival, 6-minute walking, blood pressure, etc.), and quality of life.

This phase II study is a randomized, blinded, placebo-controlled study that will enroll 160 subjects at seven different CCTRN sites throughout the U.S. All recruited subjects will have ischemic cardiomyopathy and an ejection fraction 5%). This is significant, because some work in animals suggests that CSCs can make new heart muscle tissue that can shrink the heart scar. The first 16 patients were recently enrolled in a FDA-required safety run-in phase, but the remaining patients will be enrolled in the fall after a three-month safety analysis is performed. Incidentally, this is the first cardiac stem cell trial to perform MRIs on patients with defibrillators and pacemakers

“This combination of cells represents the most potent cell therapy product ever delivered to patients,” said Dr. Traverse. “Confirming that both types of stem cells together work better than either individual cell type could lead to improved patient outcomes and better quality of life for ischemic heart failure patients.”

Dosing Recent Heart Attack Patients with G-CSF Doesn’t Seem To Work


Granulocyte-Colony Stimulating Factor (G-CSF)is a small protein that stimulates the bone marrow to produce more of a particular class of white blood cells called granulocytes and release them into the bloodstream. A commercially available version of G-CSF called Filgrastim (Neupogen) is used to boost the immune system of cancer patients whose immune systems have taken a beating from chemotherapy.

Because several clinical trials have shown that implanting bone marrow mononuclear fractions into the hearts of heart attack patients can improve the heart health of some heart attack patients, clinicians have supposed that injecting heart attack patients with drugs like filgrastim, which moves many bone marrow-derived cells into the bloodstream might also provide some relief for heart attack patients.

Nice idea, but it does not seem to work. Two clinical trials, STEMMI and REVIVAL-2, have given G-CSF to heart attack patients at different times after their heart attacks. Unfortunately both studies have failed to show a difference from the placebo.

In the REVIVAL-2 study, 114 patients were enrolled, and 56 received 10 micrograms per kilogram body weight G-CSF for five days, and the remaining patients received a placebo treatment.  G-CSF and the placebo were administered to patients five days after the hearts were successfully reperfused by percutaneous coronary intervention (this is a fancy way of saying stenting).  This study was double-blinded, placebo-controlled and well designed.  Unfortunately, when patients were studied seven years after treatment, there were no statistically significant differences between the treatment and the placebo groups when it came to the number of deaths, heart attacks, and strokes.  Thus, the authors conclude that G-CSF administration did not improve clinical outcomes for patients who had a heart attack (see Birgit Steppich, et al, Atherosclerosis and Ischemic Disease 115.4, 2016).

A second clinical trial, the STEMMI trial, was a prospective trial in which G-CSF treatment was begun 10-65 hours after reperfusion.  Here again, there were no structural differences between the placebo group and the G-CSF-treated group six months after treatment and a five-year follow-up analysis of 74 patients revealed no differences in the occurrence of major cardiovascular incidents between the two treatment groups (R.S. Ripa, and others, Circulation 2006; 113: 1983-1992).

The STEM-AMI clinical trial also showed no differences in clinical outcomes after G-CSF treatment as compared to placebo in 60 patients after three years (F. Achilli, and others, Heart 2014, 100: 574-581).

Why does this technique fail?  It is possible that the white blood cells that are mobilized by G-CSF are low-quality and do not express particular genes.  A study in rats has shown that G-CSF infusion increases the number of progenitor cells in the bloodstream, but fails to increase the number of progenitor cells in the heart after a heart attack (D. Sato, and others, Experimental Clinical Cardiology, 2012; 17:83-88).  In order for cells to home to the infarcted heart, they must express particular proteins on their surfaces.  For example, the cell surface protein CXCR4 is known to play an integral role in progenitor cell homing, along with several other proteins (see Taghavi and George, American Journal of Translational Research 2013; 5:404-411; Shah and Shalia, Stem Cells International 2011;2011:536758; Zaruba and Franz, Expert Opinion in Biological Therapy 2010; 10:321-335).  Indeed, Stein and others have shown that progenitor cells mobilized with G-CSF in human patients lack CXCR4 and other cell adhesion proteins thought to play a role in homing to the infarcted heart (Thromb Haemost 2010;103:638-643).

Therefore, even though all of these studies have not uncovered a risk in G-CSF treatment, the consensus of the data seems to be there no clinical benefit is conferred by treating heart attack patients with G-CSF.

Hair Follicles Can Direct Wound-Based Cells to Induce Scar-Free Healing


News from the University of Pennsylvania reports a new method that involves the use of fat to help heal skin without the formation of scar tissue.  This work comes from the Perelman School of Medicine at the University of Pennsylvania, and it is the result of a large-scale, multi-year study that collaborated with the Plikus Laboratory for Developmental and Regenerative Biology at the University of California, Irvine.  Their findings were published online in the journal Science on January 5th, 2017.

A fancy name for fat is “adipose tissue.”  Adipose tissue is actually a rather complicated pastiche of different cell types.  Specialized cells in adipose tissue that stores fat are called “adipocytes,” but they are more colloquially called fat cells.  Fat cells are normally found in the skin, but when wounds in the skin heal and form, those underlying population of fat cells are lost.  In skin tissue that is undergoing the process of healing, the most common cell types are known as “myofibroblasts.”  Myofibroblasts are large cells with ruffled membranes, that are kind of a cross between smooth muscle cells and fibroblasts.  They have the ability to contract like smooth muscle cells when exposed to molecules that induce smooth muscle to contract, such as angiotensin II or epinephrine.  Fibroblasts, which are numerous throughout the skin and other organs, can readily differentiate into myofibroblasts, as can stellate cells found in liver or the pancreas, some smooth muscle cells, progenitor cells in stromal tissue, epithelial cells, or circulating progenitor cells (see B. Hinz, et al, The myofibroblast: one function, multiple origins, Am J Pathol. 2007 Jun;170(6):1807-16).  Once it forms, scar tissue also does not properly form any hair follicles and this can give it a rather odd appearance relative to the rest of the skin. The Perelman researchers designed a new strategy to limit scar formation during healing by converting wound-based myofibroblasts into fat cells, which prevents the formation of scarring.

“Essentially, we can manipulate wound healing so that it leads to skin regeneration rather than scarring,” said George Cotsarelis, MD, the chair of the Department of Dermatology and the Milton Bixler Hartzell Professor of Dermatology at Penn, and the principal investigator of this project. “The secret is to regenerate hair follicles first. After that, the fat will regenerate in response to the signals from those follicles.”

Cotsarelis and his colleagues showed that the formation of fat in the skin and hair follicles are separate developmental events, but they are, nevertheless, linked.  Hair follicles form first, and the factors required to induce hair follicle formation that are produced by the regenerating hair follicle can also convert surrounding myofibroblasts into fat cells instead of a scar.  This underlying fat does not form without the formation of these new hair follicles.  These new fat cells are indistinguishable from pre-existing skin-based fat cells that give the healed wound a natural look instead of leaving a scar.  Cotsarelis and his gang discovered that a factor secreted by hair follicles called Bone Morphogenetic Protein (BMP) instructs the myofibroblasts to become fat.  This single finding represents a tectonic shift on our understanding of myofibroblasts.

“Typically, myofibroblasts were thought to be incapable of becoming a different type of cell,” Cotsarelis said. “But our work shows we have the ability to influence these cells, and that they can be efficiently and stably converted into adipocytes.” This was shown in both the mouse and in human keloid cells grown in culture.

“The findings show we have a window of opportunity after wounding to influence the tissue to regenerate rather than scar,” said the study’s lead author Maksim Plikus, PhD, an assistant professor of Developmental and Cell Biology at the University of California, Irvine. Plikus began this research as a postdoctoral fellow in the Cotsarelis Laboratory at Penn, and the two institutions have continued to collaborate.

These new findings might very well revolutionize dematological wound treatments.  These data might be useful for developing therapies that drive myofibroblasts to differentiate into adipocytes that can help wounds heal without scarring.

As Cotsarelis put it: “It’s highly desirable from a clinical standpoint, but right now it’s an unmet need.”

However, wound treatments are not the only use for this work.  Fat cell loss is a common complication of other clinical conditions.  HIV treatments, cancer, scleroderma, are just a few of the diseases that can cause wasting and drastic weight loss.  Also, because fat cells are also lost naturally because of the aging process, especially in the face, which leads to permanent, deep wrinkles, something that available anti-aging treatments cannot satisfactorily address.

“Our findings can potentially move us toward a new strategy to regenerate adipocytes in wrinkled skin, which could lead us to brand new anti-aging treatments,” Cotsarelis said.

The Cotsarelis Lab is now examining how hair follicle regeneration can promote skin regeneration.  The Plikus Laboratory would like to know more about the role of BMP in wound healing and are conducting further studies with using human cells and human scar tissue.

Stem Cell-Based Skin Graft for Severe Burns


Severe wounds are typically treated with full thickness skin grafts. Some new work by researchers from Michigan Tech and the First Affiliated Hospital of Sun Yat Sen University in Guangzhou, China might provide a way to use a patient’s own stem cells to make split thickness skin grafts (STSG). If this technique pans out, it would eliminate the needs for donors and could work well for large or complicated injury sites.

This work made new engineered tissues were able to capitalize on the body’s natural healing power. Dr. Feng Zhao at Michigan Tech and her Chinese colleagues used specially engineered skin that was “prevascularized, which is to say that Zhao and other designed it so that it could grow its own veins, capillaries and lymphatic channels.

This innovation is a very important one because on of the main reasons grafted tissues or implanted fabricated tissues fail to integrate into the recipient’s body is that the grafted tissue lacks proper vascular support. This leads to a condition called graft ischemia. Therefore, getting the skin to form its own vasculature is vital for the success of STSG.

STSG is a rather versatile procedure that can be used under unfavorable conditions, as in the case of patients who have a wound that has been infected, or in cases where the graft site possess less vasculature, where the chances of a full thickness skin graft successfully integrating would be rather low. Unfortunately, STSGs are more fragile than full thickness skin grafts and can contract significantly during the healing process.

In order to solve the problem of graft contraction and poor vascularization, Zhao and others grew sheets of human mesenchymal stem cells (MSCs) and mixed in with those MSCs, human umbilical cord vascular endothelial cells or HUVECs. HUVECs readily form blood vessels when induced, and growing mesenchymal stem cells tend to synthesize the right cocktail of factors to induce HUVECs to form blood vessels. Therefore this type of skin is truly poised to form its own vasculature and is rightly designated as “prevascularized” tissue.

Zhao and others tested their MSC/HUVEC sheets on the tails of mice that had lost some of their skin because of burns. The prevascularized MSC/HUVEC sheets significantly outperformed MSC-only sheets when it came to repairing the skin of these laboratory mice.

When implanted, the MSC/HUVEC sheets produced less contracted and puckered skin, lower amounts of inflammation, a thinner outer skin (epidermal) thickness along with more robust blood microcirculation in the skin tissue. And if that wasn’t enough, the MSC/HUVEC sheets also preserved skin-specific features like hair follicles and oil glands.

The success of the mixed MSC/HUVEC cell sheets was almost certainly due to the elevated levels of growth factors and small, signaling proteins called cytokines in the prevascularized stem cell sheets that stimulated significant healing in surrounding tissue. The greatest challenge regarding this method is that both STSG and the stem cell sheets are fragile and difficult to harvest.

An important next step in this research is to improve the mechanical properties of the cell sheets and devise new techniques to harvest these cells more easily.

According to Dr. Zhao: “The engineered stem cell sheet will overcome the limitation of current treatments for extensive and severe wounds, such as for acute burn injuries, and significantly improve the quality of life for patients suffering from burns.”

This paper can be found here: Lei Chen et al., “Pre-vascularization Enhances Therapeutic Effects of Human Mesenchymal Stem Cell Sheets in Full Thickness Skin Wound Re-pair,” Theranostics, October 2016 DOI: 10.7150/ thno.17031.

Activation of the Proteasome Enhances Stem Cell Function and Lifespan


As we age, the capacity of our stem cells to heal and replace damaged cells and tissues decline. This age-associated decrease in adult stem cell function seems to be a major contributor to the physiological decline during aging. A new paper, by Efstathios Gonos and his colleagues at the National Hellenic Research Foundation in Athens, Greece gives one possible technique that might improve the function of stem cells in an aging body.

Cells contain a multiprotein complex called the “proteasome” that degrades unneeded or defective proteins. The proteasome controls protein half-lives, function, and the protein composition of the cell. Functional failure of the proteasome has been linked to various biological phenomena including senescence and aging. The role of the proteasome in stem cells aging, however has received little attention to date.

Proteasome figure

Gonos and his coworkers used mesenchymal stem cells from umbilical cord Wharton’s Jelly and human fat. Because they were able to compare the proteasome activity in very young and aged stem cells, Gonos and others discovered a significant age-related decline in proteasome content and activity between these two types of stem cells. The proteasome from Warton’s Jelly mesenchymal stem cells were consistently more active and displayed more normal function and activity than those from human fat.  In fact, not only were the protease activities of the proteasomes from the aging stem cells decreased, but they also displayed structural alterations.

These differences in proteasomal activity were not only reproducible, but when the proteasome of young stem cells were compromised, the “stemness,” or capacity of the stem cells to act as undifferentiated cells, was negatively affected.

Even more surprisingly, once after mesenchymal stem cells from human donors lost their ability to proliferate and act as stem cells (their stemness, that is) their decline could be counteracted by artificially activating their proteasomes. Activating the proteasome seems to help the cell “clean house,” get rid of junk proteins, and rejuvenate themselves.

proteasomes-and-stem-cells

Gonos and his team found that the stem cell-specific protein, Oct4, binds to the promoter region of the genes that encode the β2 and β5 proteasome subunits. Oct4 might very well regulate the expression of these proteasome-specific genes.

From this paper, it seems that a better understanding the mechanisms regulating protein turnover in stem cells might bring forth a way to stem cell-based interventions that can improve health during old age and lifespan.

This paper was published in Free Radical Biology and Medicine, Volume 103, February 2017, Pages 226–235.

Better Ways to Make Dopamine-Producing Neurons From Stem Cells


Producing dopamine-making neurons from stem cells for transplantation into Parkinson’s disease patients remains challenging. Differentiating stem cells into dopaminergic neurons is not as efficient a process as we would like it to be. While several laboratories have managed to make pretty good batches of dopaminergic neurons, reliably producing large and pure batches of dopamine-making neurons from pluripotent stem cells is still somewhat problematic. Secondly, transplanting dopamine-making neurons into either the midbrain or the striatum of the brain represents another patch of problems because the production of too much dopamine can cause unwanted, uncontrollable movements. Preclinical assessments of stem cell-derived dopamine neurons in laboratory animals have produced positive, but highly varied results, even though the transplanted cells are very similar at the time of transplantation.

“This has been frustrating and puzzling, and has significantly delayed the establishment of clinical cell production protocols,” said Malin Parmar, who led the study at Lund University.

To address this issue, Parmar and his colleagues used modern global gene expression studies to gain a better understand the molecular changes that drive the differentiation of stem cells into dopamine-making neurons. Parmar conducted these experiments in collaboration with a team of scientists at Karolinska Institute. In their paper, which appeared in the journal Cell Stem Cell, Parmar and his colleagues used single-cell RNA seq to construct the neuronal development of dopaminergic neurons.

lmx1a-expressing-cells

These neurons are characterized by the expression of a gene called LMX1a. However, it turns out that LMX1a-expressing neurons includes not only midbrain dopaminergic neurons (see below at the substantia nigra), but also subthalamic nuclear neurons.

midbrain

These findings reveal that markers used to identify midbrain dopaminergic neurons do not specifically isolate midbrain dopaminergic neurons, but isolate a mixture of cells. Is there a way to separate these two populations?

subthalamic-nucleus

Indeed, there is. Parmar and his colleagues in the laboratory of Thomas Perlmann showed that although dopaminergic neurons from the midbrain and subthalamic nuclear neurons are related, they do express a distinct profile of genes that are specific to the two cell types. The authors argue that the application of these distinct marker genes can help optimize those protocols that differentiate dopaminergic neurons from pluripotent stem cells.

See Nigel Kee and others, “Single-Cell Analysis Reveals a Close Relationship between Differentiating Dopamine and Subthalamic Nucleus Neuronal Lineages,” Cell Stem Cell, 2016; DOI: 10.1016/j.stem.2016.10.003.

Hitting Acute Myeloid Leukemia Where It Hurts


Research teams from Massachusetts General Hospital and the Harvard Stem Cell Institute have teamed up to devise a new strategy for treating acute myeloid leukemia (AML). This new strategy is an outgrowth of new findings by these research groups that have identified an enzyme that plays a central role in the onset of AML.

During blood cell development in the bone marrow, hematopoietic stem cells divide to produce daughters cells, one of which remains a stem cells and the other of which becomes a progenitor cell. The progenitor cells can either differentiate toward the lymphoid lineage, in which it will become either a B-lymphocyte, T-lymphocyte, or a Natural Killer cell, or a myeloid precursor that can give rise to neutrophils, megakarocytes (that produce platelets), monocytes, eosinophils, or red blood cells. However, the means by which myeloid cells are formed in the bone marrow of AML patients is abnormal, and the myeloid precursor cells do not differentiate into a specific white blood cells, but, instead, remain immature and proliferate and crowd out and suppress the development of normal blood cells.

David Scadden, MD, director of the MGH Center for Regenerative Medicine (MGH-CRM), co-director of the Harvard Stem Cell Institute (HSCI), and senior author of this Cell paper, had this to say about AML: “AML is a devastating form of cancer; the five-year survival rate is only 30 percent, and it is even worse for the older patients who have a higher risk of developing the disease.” Dr. Scadden continued: “New therapies for AML are extremely limited – we are still using the protocols developed back in the 1970s – so we desperately need to find new treatments.”

What genetic changes cause these developmental abnormalities that lead to AML? As it turns out, a wide range of genetic changes occur in AML (see Medinger M, Lengerke C, Passweg J. Cancer Genomics Proteomics. 2016 09-10;13(5):317-29; and Prada-Arismendy J, Arroyave JC, Röthlisberger S. Blood Rev. 2016 Sep 2. pii: S0268-960X(16)30060-1). In this paper, however, the authors proposed that the effects on differentiation had to transition through a few shared events. Using a method created by lead author David Sykes of the MGH-CRM and HSCI, the team discovered that a single dysfunctional point in the developmental pathway common to most forms of AML that could be a treatment target.

Previous studies had demonstrated that expression of the HoxA9 transcription factor, a transcription factor that must be inactivated during normal myeloid cell differentiation, is actually quite active in the myeloid precursors of 70 percent of patients with AML.  Unfortunately, no inhibitors of HoxA9 have been identified to date.  Therefore, Scadden and others used a different, albeit freaking ingenious, approach to screen small molecules that were potential Hox9A inhibitors based not on their interaction with a particular molecular target but on whether they could overcome the differentiation blockade characteristic of AML cells.

First, they induced HoxA9 overexpression in cultured mouse myeloid cells to design a cellular model of AML.  They also genetically engineered these cultured cells to glow green once they differentiated into the mature white blood cell types.  These groups screened more than 330,000 small molecules to find which would produce the green signal in the cultured cells.  The green glow indicated that the HoxA9-induced differentiation blockade had been effectively overcome. Only these 330,000 compounds, only 12 induced terminal differentiation of these cells, but 11 of then acted by suppressing a metabolic enzyme called DHODH.  DHODH, or dihydroorotate dehydrogenase, is a biosynthetic an enzyme that is a member of the pyrimidine biosynthesis pathway, which catalyzes the oxidation of dihydroorotate to orotate.

dhodh

This is a shocking discovery because the DHODH enzyme is not known to play any significant role in myeloid differentiation.  Corroboratory experiments demonstrated that inhibition of DHODH effectively induced differentiation in both mouse and human AML cells.

The next obvious step would be to use known inhibitors of DHODH in mice with AML.  They were able to identify a dosing schedule that reduced levels of leukemic cells and prolonged survival that caused none of the adverse effects of normal chemotherapy.  Even though six weeks of treatment with DHODH inhibitors did not prevent eventual relapse, treatment for up to 10 weeks seemed to have led to long-term remission of AML.  This remission included reduction of the leukemia stem cells that can lead to relapse.  Similar results were observed in mice into which human leukemia cells had been implanted.

“Drug companies tend to be skeptical of the kind of functional screening we used to identify DHODH as a target, because it can be complicated and imprecise. We think that with modern tools, we may be able to improve target identification, so applying this approach to a broader range of cancers may be justified,” says Scadden, who is chair and professor of Stem Cell and Regenerative Biology and Jordan Professor of Medicine at Harvard University. Additional investigation of the mechanism underlying DHODH inhibition should allow development of protocols for human clinical trials.

Scadden noted that this manuscript describes six years of work and, also, is a true reflection of the collaborative nature of science in pursuit of clinically relevant therapies.