Placental Stem Cell Provides Model System for Pregnancy Complications


Preeclampsia occurs during pregnancy, and is characterized by a gradual rise in blood pressure to dangerous levels. It usually presents after the 20th week of pregnancy, and can even persist after delivery.

How common is preeclampsia? In the United States, preeclampsia affects 5-8% of all births. Among the women of Canada, the United States, and Western Europe, the births affected by preeclampsia range from 2-5%. (5,6) In the developing world, the percentage of births affected by preeclampsia range from 4% of all deliveries to as high as 18% in parts of Africa. In Latin America, preeclampsia is the number one cause of maternal death.

Globally, ten million women develop preeclampsia each year, and 76,000 pregnant women die each year from preeclampsia and related disorders. The number of babies who die from these disorders is thought to be on the order of 500,000 per year.

In developing countries, a woman is seven times more likely to develop preeclampsia than a woman in a developed country, and between 10-25% of those cases will result in the death of the mother.

Now that I’ve hopefully convinced you that preeclampsia is a problem, how do we address it? Research in laboratory mice have told us a great deal about preeclampsia and other disorders that arise during pregnancy, but finding a sound model system that can be used to develop effective and safe treatments requires something closer to humans.

To that end, Hanna Mikkola and her research team and the University of California, Los Angeles Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (that’s a mouthful), have identified a type of progenitor cell that is key to the growth of a health placenta.

Work in laboratory mice has shown that preeclamsia often arises because of a malformed placenta. This poorly-formed placenta does not provide enough oxygen and nutrients for the growth needs of the baby at the fetal stages of development, and the mother’s body responds by increasing the mother’s blood pressure in order to increase blood flow through the placenta.

The work by Mikkola and her colleagues have provided physicians and developmental biologists with a new “tool box” for understanding the development of the placenta and the different cell types that compose it. Hopefully, various complications during pregnancy might be due to malfunctions of these particular cell types and the progenitor cells that produce them.

Mikkola and others started with laboratory mice, since it is possible to label single cells in mouse embryos and track exactly where those cells and their progeny go and what they do. The powerful genetic tools available in laboratory mice also allows scientists to identify the various biochemical signaling pathways that cells use to communicate with other cells during placental development. Also, if something goes wrong with particular cell signaling pathways, the mouse model allows scientists to precisely characterize the developmental consequences of much dysfunction.

Through their work in the mouse, Mikkola and her co-workers identified a placental progenitor cells called the Epcamhi labyrinth trophoblast progenitor or LaTP. The LaTP is like a multipotent adult of tissue-specific stem cell that can become many of the cells required to make the placenta.

Mikkola and her group also showed that the “c-Met” signaling pathway was required to sustain the growth of LaTPs during placental development and that this same signaling pathway was required to form a specific group of cells (syncytiotrophoblasts) that form the interface between the placenta and the mother’s endometrium. Elimination of c-Met signaling completely compromised the growth of the fetus and its development.

g abs7

This new cell type should provide a wealth of opportunities to examine complications during pregnancy like preeclampsia and others and design treatments that can save the lives of mothers and their babies.

Advertisements

A Stem Cell-Based Therapy for Colon Cancer


Colorectal cancer is the third leading cause of death in the Western World. Like many other types of cancer, colorectal cancer spreads and is propagated by cancer stem cells. Therefore, understanding how to inhibit the growth of cancer stem cells provides a key to treating the cancer itself.

By inactivating a gene that drives stem cell renewal in cancer stem cells, scientists and surgeons at the Princess Margaret Cancer Centre in Toronto, Canada, have discovered a promising new approach to treating colorectal cancer.

John Dick, a senior scientist at the Princess Margaret Cancer Centre, said, “This is the first step toward clinically applying the principles of cancer stem cell biology to control cancer growth and advance the development of durable cures.”

In preclinical experiments with laboratory rodents, Dick and his team identified a gene called BMI-1 as a pivotal regulator of colon cancer stem cell proliferation. With this knowledge in hand, Dick’s laboratory dedicated many hours to finding small molecules that disarm BMI-1. Then Dick and his co-workers replicated human colorectal cancer in mice, and used their BMI-1-inhibiting small molecules to treat these cancer-stricken mice.

According to lead author of this work, Antonija Kreso: “Inhibiting a recognized regulator of self-renewal is an effective approach to control tumor growth, providing strong evidence for the clinical relevance of self-renewal as a biological process for therapeutic targeting.”

Dr. Dick explained: “When we blocked the BMI-1 pathway, the stem cells were unable to self-renew, which resulted in long-term and irreversible impairment of tumor growth. In other words, the cancer was permanently shut down.”

The clinical potential of this approach is significant, since it provides a viable treatment that specifically targets colon cancer. About 65% of all colorectal cancers have an activated BMI-1 pathway. Since physicians now have techniques for identifying the presence of BMI-1 and the tools to inhibit it, this strategy could translate into a clinical treatment that might radically transform the treatment of aggressive, advanced colorectal cancers. Such a treatment would be specific, personal, and specific. May the phase 1 trials begin soon!!!

Heart Regeneration and the Heart’s Own Stem Cell Population


For years scientists were sure that the heart virtually never regenerated.

Today this view has changed, and researchers at the Max Plank Institute for Heart and Lung Research have identified a stem cell population that is responsible for heart regeneration. Human hearts, as it turns out, do constantly regenerate, but at a very slow rate.

This finding brings the possibility that it might be possible to stimulate and augment this self-healing process, especially in patients with diseases or disorders of the heart, with new treatments.

Some vertebrates have the ability to regenerate large portions of their heart. For example zebrafish and several species of amphibians have the ability to self-heal and constantly maintain the heart at maximum capacity. This situation is quite different for mammals that have a low capacity for heart regeneration. Heart muscle cells in mammals stop dividing soon after birth.

However, mammalian hearts do have a resident stem cell population these cells replace heart muscle cells throughout the life of the organism, In humans, between 1-4% of all heart muscle cells are replaced every year.

Experiments with laboratory mice have identified at heart stem cells called Sca-1 cells that replace adult heart muscle cells and are activated when the heart is damaged. Under such conditions, Sca-1 cells produce significantly more heart muscle.

Unfortunately, the proportion of Sca-1 cells in the heart is very low, and finding them has been likened to searching for a diamond at the bottom of the Pacific Ocean.

Shizuka Uchida, the project leader of this research, said, “We also faced the problem that Sca-1 is no longer available in the cells as a marker protein for stem cells after they have been changed into heart muscle cells. To prove this, we had to be inventive.”

This inventiveness came in the form of a visible protein that was made all the time in the Sca-1 cells that would continue being made even if the cells differentiated into heart muscle.

Uchida put it this way: “In this way, we were able to establish that the proportion of the heart muscle cells originating from Sca-1 stem cells increased continuously in healthy mice. Around five percent of the heart muscle cells regenerated themselves within 18 months.”

When the same measurements were taken in mice with heart disease, the number of heart muscle cells made from Sca-1 stem cells increased three-fold.

“The data show that in principle the mammalian heart is able to trigger regeneration and renewal processes. Under normal circumstances, however, these processes are not enough to ultimately repair cardiac damage,” said Thomas Braun, the principal investigator in whose laboratory this work was done.

The aim is to devise and test strategies to improve the activity and number of these stem cells and, ultimately, to strengthen and augment the heart’s self-healing powers.

Using Human Stem Cells to Predict the Efficacy of Alzheimer’s Drugs


Scientists who work in the pharmaceutical industry have seen this time and time again: A candidate drug that works brilliantly in laboratory animals fails to work in human trials. So what’s up with this?

Now a research consortium from the University of Bonn and the biomedical company Life & Brain GmbH has shown that animal models of Alzheimer’s disease fail to recapitulate the results observed with cultured human nerve cells made from stem cells. Thus, they conclude that candidate Alzheimer’s disease drugs should be tested in human nerve cells rather than laboratory animals.

In the brains of patients with Alzheimer’s disease beta-amyloid protein deposits form that are deleterious to nerve cells. Scientists who work for drug companies are trying to find compounds that prevent the formation of these deposits. In laboratory mice that have a form of Alzheimer’s disease, over-the-counter drugs called NSAIDs (non-steroidal anti-inflammatory drugs), which include such population agents as aspirin, Tylenol, Advil, Nuprin and so on prevent the formation of beta-amyloid deposits. However in clinical trials, the NSAIDs royally flopped (see Jaturapatporn DIsaac MGMcCleery JTabet N. Cochrane Database Syst Rev. 2012 Feb 15;2:CD006378).

Professor Oliver Brüstle, the director of the Institute for Reconstructive Neurobiology at the University of Bonn and Chief Executive Officer of Life and Brain GmbH, said, “The reasons for these negative results have remained unclear for a long time.”

Jerome Mertens, a former member of Professor Brüstle’s research, and the lead author on this work, said, “Remarkably, these compounds were never tested directly on the actual target cells – the human neuron.”

The reason for this disparity is not difficult to understand because purified human neurons were very difficult to acquire. However, advances in stem cell biology have largely solved this problem, since patient-specific induced pluripotent stem cells can be grow in large numbers and differentiated into neurons in large numbers.

Using this technology, Brüstle and his collaborators from the University of Leuven in Belgium have made nerve cells from human patients. These cells were then used to test the ability of NSAIDs to prevent the formation of beta-amyloid deposits.

According to Philipp Koch, who led this study, “To predict the efficacy of Alzheimer drugs, such tests have to be performed directly on the affected human nerve cells.”

Nerve cells made from human induced pluripotent stem cells were completely resistant to NSAIDs. These drugs showed no ability to alter the biochemical mechanisms in these cells that eventually lead to the production of beta-amyloid.

Why then did they work in laboratory animals? Koch and his colleagues think that biochemical differences between laboratory mice and human cells allow the drugs to work in one but not in the other. In Koch’s words, “The results are simply not transferable.”

In the future, scientists hope to screen potential Alzheimer’s disease drugs with human cells made from the patient’s own cells.

“The development of a single drug takes an average of ten years,” said Brüstle. “By using patient-specific nerve cells as a test system, investments by pharmaceutical companies and the tedious search for urgently needed Alzheimer’s medications could be greatly streamlined.”

Adult Stem Cells Suppress Cancerous Growth While Dormant


William Lowry and his postdoctoral fellow Andrew White at UCLA’s Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered the means by which particular adult stem cells suppress their ability to trigger skin cancer during their dormant phase. A better understanding of this mechanism could provide the foundation to better cancer-prevention strategies.

This study was published online Dec. 15 in the journal Nature Cell Biology. William Lowry, Ph.D. is an associate professor of molecular, cell and developmental biology in the UCLA College of Letters and Science.

Hair follicle stem cells are those tissue-specific adult stem cells that generate the hair follicles. Unfortunately, they also are the cell population from which cutaneous squamous cell carcinoma, a common skin cancer, begins. However, these stem cells cycle between active periods, when they grow, and dormant periods, when they do not grow.

Diagram of the hair follicle and cell lineages supplied by epidermal stem cells. A compartment of multipotent stem cells is located in the bulge, which lies in the outer root sheath (ORS) just below the sebaceous gland. Contiguous with the basal layer of the epidermis, the ORS forms the external sheath of the hair follicle. The interior or the inner root sheath (IRS) forms the channel for the hair; as the hair shaft nears the skin surface, the IRS degenerates, liberating its attachments to the hair. The hair shaft and IRS are derived from the matrix, the transiently amplifying cells of the hair follicle. The matrix surrounds the dermal papilla, a cluster of specialized mesenchymal cells in the hair bulb. The multipotent stem cells found in the bulge are thought to contribute to the lineages of the hair follicle, sebaceous gland, and the epidermis (see red dashed lines). Transiently amplifying progeny of bulge stem cells in each of these regions differentiates as shown (see green dashed lines).
Diagram of the hair follicle and cell lineages supplied by epidermal stem cells. A compartment of multipotent stem cells is located in the bulge, which lies in the outer root sheath (ORS) just below the sebaceous gland. Contiguous with the basal layer of the epidermis, the ORS forms the external sheath of the hair follicle. The interior or the inner root sheath (IRS) forms the channel for the hair; as the hair shaft nears the skin surface, the IRS degenerates, liberating its attachments to the hair. The hair shaft and IRS are derived from the matrix, the transiently amplifying cells of the hair follicle. The matrix surrounds the dermal papilla, a cluster of specialized mesenchymal cells in the hair bulb. The multipotent stem cells found in the bulge are thought to contribute to the lineages of the hair follicle, sebaceous gland, and the epidermis (see red dashed lines). Transiently amplifying progeny of bulge stem cells in each of these regions differentiates as shown (see green dashed lines).

White and Lowry used transgenic mouse models for their work, and they inserted cancer-causing genes into these mice that were only expressed in their hair follicle stem cells. During the dormant phase, the hair follicle stem cells were not able to initiate skin cancer, but once they transitioned into their active period, they began growing cancer.

Dr. White explained it this way: “We found that this tumor suppression via adult stem cell quiescence was mediated by PTEN (phosphatase and tensin homolog), a gene important in regulating the cell’s response to signaling pathways. Therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and PTEN must be present for the suppression to work.”

Retinoids are used to treat certain types of leukemias because they drive the cancer cells to differentiate and cease dividing. Likewise, understanding cancer suppression by inducing quiescence could, potentially, better inform preventative strategies for certain patients who are at higher risk for cancers. For example, organ transplant recipients are particularly susceptible to squamous cell carcinoma, as are those patients who are taking the drug vemurafenib (Zelboraf) for melanoma (another type of skin cancer). This study also might reveal parallels between squamous cell carcinoma and other cancers in which stem cells have a quiescent phase.

Reactivation of Hair Follicle Stem Cells Restarts Hair Growth


Sarah Millar and her team at the Perelman School of Medicine at the University of Pennsylvania have exploited a known property of hair follicle stem cells to restart hair growth in laboratory animals.

The Wnt signaling pathway is an important regulator of hair follicle proliferation, but does not seem to be required for hair follicle survival. Wnt signaling in cells culminated in the activation of a protein called beta-catenin, which goes to the nucleus of the cell and causes changes in gene expression.

wnt signaling

Millar and her colleagues disrupted Wnt signaling in laboratory animals by expressed an inhibitor called Dkk1 in hair follicles. Dkk1 expression prevented hair growth, and when the hair follicles were examined, they still had their stem cell populations, but these stem cells were dormant. Removal of Dkk1 resumed Wnt/beta-catenin signaling, and restored hair growth.

Dkk1 activity

Interestingly, Millar’s group found Wnt activity in non-hairy regions of the skin, such as palms, soles of feet, and so on. Therefore, in order for Wnt signaling to induce hair growth, it must occur within specific cell types.

This work also has additional applications: skin tumors often show over-active beta-catenin. Removing beta-catenin could prevent the growth of skin tumors, just as removing beta-catenin in the skin of these mice prevented proliferation of any hair follicles. However, agents that can activate beta-cateinin in hair follicles could reactivate dormant hair follicles and induce new hair growth.

Finding ways to safely reactivating the Wnt pathway in particular cells in the skin is a major focus of Millar’s research group.  Such work may lead to treatments for male pattern baldness.

Merry Christmas to All My Readers!!


Matthew 1:18-25
18 This is how the birth of Jesus the Messiah came about: His mother Mary was pledged to be married to Joseph, but before they came together, she was found to be pregnant through the Holy Spirit. 19 Because Joseph her husband was faithful to the law, and yet did not want to expose her to public disgrace, he had in mind to divorce her quietly.

20 But after he had considered this, an angel of the Lord appeared to him in a dream and said, “Joseph son of David, do not be afraid to take Mary home as your wife, because what is conceived in her is from the Holy Spirit. 21 She will give birth to a son, and you are to give him the name Jesus, because he will save his people from their sins.”

22 All this took place to fulfill what the Lord had said through the prophet: 23 “The virgin will conceive and give birth to a son, and they will call him Immanuel” (which means “God with us”).

24 When Joseph woke up, he did what the angel of the Lord had commanded him and took Mary home as his wife. 25 But he did not consummate their marriage until she gave birth to a son. And he gave him the name Jesus.