Primed Fat-Based Stem Cells Enhance Heart Muscle Proliferation


A Dutch group from the University of Groningen has shown that fat-based stem cells can enhance the proliferation of cultured heart muscle cells. The stem cells used in these experiments were preconditioned and this pretreatment greatly enhanced their ability to activate heart muscle cells.

This paper, by Ewa Przybyt, Guido Krenning, Marja Brinker, and Martin Harmsen was published in the Journal of Translational Medicine. To begin, Przybyt and others extracted human adipose derived stromal cells (ADSC) from fat tissue extracted from human liposuction surgeries. To do this, they digested the fat with enzymes, centrifuged and washed it, and then grew the remaining cells in culture.

Then they used rat neonatal heart muscle cells and infected them with viruses that causes them to glow when certain types of light was shined on them. Then Przybyt and others co-cultured these rat heart cells with human ADSCs.

In the first experiment, the ADSCs were treated with drugs to prevent them from dividing and then they were cultured with rat heart cells in a one-to-one ratio. The heart muscle cells grew faster with the ADSCs than they did without them. To determine if cell-cell contact was required for this stimulation, they used the culture medium from ADSCs and grew the heart cell on this culture medium. Once again, the heart cells grew faster with the ADSC culture medium than without it. These results suggest that the ADSCs stimulate heart cell proliferation by secreting factors that activate heart cell division.

Another experiment subjected the cultured heart cells to the types of conditions they might experience inside the heart after a heart attack. For example, heart cells were subjected to low oxygen tensions (2% oxygen), and inflammation – two conditions found within the heart after a heart attack. These treatments slowed heart cell growth, but this heart cell growth was restored by adding the growth medium of ADSCs. Even more remarkably, when ADSCs were grown in low-oxygen conditions or treated with inflammatory molecules (tumor necrosis factor-alpha or interleukin-1beta), the culture medium increased the fractions of cells that grew. Therefore, ADSCs secrete molecules that increase heart muscle cell proliferation, and increase proliferation even more after the ADSCs are preconditioned by either low oxygen tensions or inflammation.

In the next experiment, Przybyt and others examined the molecules secreted by ADSCs under normal or low-oxygen tensions to ascertain what secreted molecules stimulated heart cell growth. It was clear that the production of a small protein called interleukin-6 was greatly upregulated.

Could interleukin-6 account for the increased proliferation of heart cells? Another experiment showed that the answer was yes. Cultured heart cells treated with interleukin-6 showed increased proliferation, and when antibodies against interleukin-6 were used to prevent interleukin-6 from binding to the heart cells, these antibodies abrogated the effects of interleukin-6.

Przybyt and others then took these results one step further. Since the signaling pathways used by interleukin-6 are well-known, they examined these pathways. Now interleukin-6 signals through pathways, once of which enhances cell survival, and another pathway that stimulated cell proliferation. The cell proliferation pathway uses a protein called “STAT3” and the survival function uses a protein called “Akt.” Both pathways were activated by interleukin-6. Also, the culture medium of ADSCs that were treated with interleukin-6 induced the interleukin-6 receptor proteins (gp80 and gp130) in cultured heart muscle cells. This gives heart muscle cells a greater capacity to respond secreted interleukin-6.

This paper shows that stromal stem cells from fat has the capacity, in culture, to activate the growth of cultured heart muscle cells. Also, if these cells were preconditioned with low oxygen tensions or pro-inflammatory molecules, those fat-based stem cells secreted interleukin-6, which enhanced heart muscle cell survival, and proliferation, even if those heart muscle cells are exposed to low-oxygen tensions or inflammatory molecules.

This suggests that preconditioned stem cells from fat might be able to protect heart muscle cells and augment heart healing after a heart attack. Alternatively, cardiac administration of interleukin-6 after a heart attack might prove even more effective to protect heart muscle cells and stimulate heart muscle cell proliferation. Human trials anyone?

BMP-2 Treatment Limits Infarct Size in After a Heart Attack in Mice


Bone Morphogen Protein 2 (BMP2) is a powerful signaling molecule that is made during development, healing, and other significant physiological events. During the development of the heart, BMP2 modulates the activation of cardiac genes. In culture, BMP2 can protect heart muscle cells from dying during serum starvation. Can BMP2 affect hearts that have just experienced a heart attack?

Scientists from the laboratories of Karl Werdan and Thomas Braun at the Max Planck Institute or Heart and Lung Research in Bad Nauheim, Germany have addressed this question in a publication in the journal Shock.

In this paper, Henning Ebelt and his colleagues Gave intravenous BMP2 to mice after a heart attack. CD-1 mice were subjected to LAD-ligation to induce a heart attack (LAD stands for left anterior descending coronary artery, which is tied shut to deprive the heart muscle of oxygen). 1 hour after the heart attack, mice were given 80 microgram / gram of body weight of intravenous recombinant BMP2. The hearts of some animals were removed 5-7 days after the heart attack, but others were examined 21 days after the heart attack to determine the physiological performance of the hearts. Control animals were given intravenous phosphate buffered saline.

Coronary arteries

The extirpated hearts were analyzed for cell death, and the size of their heart scars. Also, protein expression analyses showed the different proteins expressed in the heart muscle cells as a result of BMP2 treatment. Also, the effects of BMP2 on cultured heart muscle cells was ascertained.

The results showed that BMP2 could protect cultured heart muscle cells from dying in culture if they when they were exposed to hydrogen peroxide. Hydrogen peroxide mimics stressful conditions and under normal circumstances, cultured heart muscle cells pack up and die in the presence of hydrogen peroxide (200 micromolar for those who are interested). However, if cultured with 80 ng / mL BMP2, the survival of cultured heart muscle cells greatly increased.

When it came to the hearts of mice that were administered iv BMP2, the BMP2-administered mice survived better and had a smaller infarct size (almost 50% of the heart in the controls and less than 40% in the BMP2-administered hearts). When the degree of cell death was measured in the mouse hearts, those hearts from mice that were administered BMP2 showed less cell death (as determined by the TUNEL assay). BMP2 also increased the beat frequency and contractile performance of isolated heart muscle cells.

FInally, the physiological parameters of the BMP2-treated animals were slightly better than in the control animals. The improvements were consistent, but not overwhelming.

Interestingly, when the proteins made by the hearts of BMP2- and PBS-administered animals were analyzed, there were some definite surprises. BMP2 normally signals to cells by binding a two-part receptor that sticks phosphates on itself, and in doing so, recruits “SMAD” proteins to it that end up getting attached to them. The SMAD proteins with phosphates on them stick together and go to the nucleus where they activate gene expression.

BMP signaling

However, the heart muscle cells of the BMP2-administered mice did not contain heavily phosphorylated SMAD2, even though they did show phosphorylated SMAD1, 5, & 8.  I realize that this may sound like Greek to you, but it means this:  Different members of the BMP superfamily signal to cells by utilizing different combinations of phosphorylated SMADs.  The related signaling molecule, TGF-beta (transforming growth factor-beta), increases scar formation in the heart after a heart attack.  TGF-beta signals through SMAD2.  BMP2 does not signal through SMAD2, and therefore, elicits a distinct biological response than TGF-beta.

These results show that BMP2 administration after a heart attack decreases cell death and decreases the size of the heart scar.  There might be a clinical use for BMP2 administration after a heart attack.

See Henning Ebelt, et al., Shock 2013 Apr;39(4):353-60.