Stem Cells and LDL Play a Role in Atherosclerosis


Researchers at the University at Buffalo have discovered a new understanding of atherosclerosis in humans that include a key role for stem cells that promote inflammation.

Published in the journal PLOS One, this work extends to humans previous findings in lab animals by researchers at Columbia University that showed that high levels of LDL (“bad”) cholesterol promote atherosclerosis by stimulating production of hematopoietic stem/progenitor cells (HSPC’s).

“Our research opens up a potential new approach to preventing heart attack and stroke, by focusing on interactions between cholesterol and the HSPCs,” says Thomas Cimato, lead author on the PLOS One paper and assistant professor in the Department of Medicine in the UB School of Medicine and Biomedical Sciences.

Cimato noted that the role of stem cells in atherosclerosis could lead to the development of a useful therapy in combination with statins or to a novel therapy that could be used in place of statins for those individuals who cannot tolerate them.

In humans, high total cholesterol recruits stem cells from the bone marrow into the bloodstream. The cytokine IL-17, which has been implicated in many chronic inflammatory diseases, including atherosclerosis, is responsible for the recruitment of HSPCs. IL-17 boosts levels of granulocyte colony stimulating factor (GCSF), which induces the release of stem cells from the bone marrow.

According to Cimato, they observed that statins reduce the levels of HSPCs in the blood but not every subject responded similarly. “We’ve extrapolated to humans what other scientists previously found in mice about the interactions between LDL cholesterol and these HSPCs,” explains Cimato.

The fact that a finding in laboratory animals holds true for humans is noteworthy, adds Cimato. “This is especially true with cholesterol studies,” he says, “because mice used for atherosclerosis studies have very low total cholesterol levels at baseline. We feed them very high fat diets in order to study high cholesterol but it isn’t [sic] easy to interpret what the levels in mice will mean in humans and you don’t know if extrapolating to humans will be valid.”

Cimato added that the LDL concentrations in the blood of mice in their studies is much higher than what is found in patients who come to the hospital with a heart attack or stroke.

“The fact that this connection between stem cells and LDL cholesterol in the blood that was found in mice also turns out to be true in humans is quite remarkable,” he says.

Cimato explains that making the jump from rodents with very high LDL cholesterol to humans required some creative steps, such as the manipulation of the LDL cholesterol levels of subjects through the use of three different kinds of statins.

The study involved monitoring for about a year a dozen people without known coronary artery disease who were on the statins for two-week periods separated by one-month intervals when they were off the drugs.

“We modeled the mechanism of how LDL cholesterol affects stem cell mobilization in humans,” says Cimato.

Cimato and his group found that LDL cholesterol modulates the levels of stem cells that form neutrophils, monocytes and macrophages, the primary cell types involved in the formation of plaque and atherosclerosis.

The next step, he says, is to find out if HSPCs, like LDL cholesterol levels, are connected to cardiovascular events, such as heart attack and stroke.

First Patient Treated in Study that Tests Stem Cell-Gene Combo to Repair Heart Damage


The first patient has been treated in a groundbreaking medical trial in Ottawa, Canada, that uses a combination of stem cells and genes to repair tissue damaged by a heart attack. The first test subject is a woman who suffered a severe heart attack in July and was treated by the research team at the Ottawa Hospital Research Institute (OHRI). Her heart had stopped beating before she was resuscitated, which caused major damage to her cardiac muscle.

The therapy involves injecting a patient’s own stem cells into their heart to help fix damaged areas. However, the OHRI team, led by cardiologist Duncan Stewart, M.D., took the technique one step further by combining the stem cell treatment with gene therapy.

“Stem cells are stimulating the repair. That’s what they’re there to do,” Dr. Stewart said in an interview. “But what we’ve learned is that the regenerative activity of the stem cells in these patients with heart disease is very low, compared to younger, healthy patients.”

Stewart and his colleagues will supply the stem cells with extra copies of a particular gene in an attempt to restore some of that regenerative capacity. The gene in question encodes an enzyme called endothelial nitric oxide synthase (eNOS). Nitric oxide is a small, gaseous molecule that is made from the amino acid arginine by the enzyme nitric oxide synthase. Nitric oxide or NO signals to smooth muscle cells that surround blood vessels to relax, which causes blood vessels to dilate and this increases blood flow. In the damaged heart, NO also helps build up new blood vessels, which increase healing of the cardiac muscle. Steward added, “That, we think, is the key element. We really think it’s the genetically enhanced cells that will provide the advantage.”

Nitric oxide synthesis

The study will eventually involve 100 patients who have suffered severe heart attacks in Ottawa, Toronto and Montreal.

Producing blood cells from stem cells could yield a purer, safer cell therapy


The journal Stem Cells Translational Medicine has published a new protocol for reprogramming induced pluripotent stem cells (iPSCs) into mature blood cells. This protocol uses only a small amount of the patient’s own blood and a readily available cell type. This novel method skips the generally accepted process of mixing iPSCs with either mouse or human stromal cells. Therefore, is ensures that no outside viruses or exogenous DNA contaminates the reprogrammed cells. Such a protocol could lead to a purer, safer therapeutic grade of stem cells for use in regenerative medicine.

The potential for the field of regenerative medicine has been greatly advanced by the discovery of iPSCs. These cells allow for the production of patient-specific iPSCs from the individual for potential autologous treatment, or treatment that uses the patient’s own cells. Such a strategy avoids the possibility of rejection and numerous other harmful side effects.

CD34+ cells are found in bone marrow and are involved with the production of new red and white blood cells. However, collecting enough CD34+ cells from a patient to produce enough blood for therapeutic purposes usually requires a large volume of blood from the patient. However, a new study outlined But scientists found a way around this, as outlined by Yuet Wai Kan, M.D., FRS, and Lin Ye, Ph.D. from the Department of Medicine and Institute for Human Genetic, University of California-San Francisco has devised a way around this impasse.

“We used Sendai viral vectors to generate iPSCs efficiently from adult mobilized CD34+ and peripheral blood mononuclear cells (MNCs),” Dr. Kan explained. “Sendai virus is an RNA virus that carries no risk of altering the host genome, so is considered an efficient solution for generating safe iPSC.”

“Just 2 milliliters of blood yielded iPS cells from which hematopoietic stem and progenitor cells could be generated. These cells could contain up to 40 percent CD34+ cells, of which approximately 25 percent were the type of precursors that could be differentiated into mature blood cells. These interesting findings reveal a protocol for the generation iPSCs using a readily available cell type,” Dr. Ye added. “We also found that MNCs can be efficiently reprogrammed into iPSCs as readily as CD34+ cells. Furthermore, these MNCs derived iPSCs can be terminally differentiated into mature blood cells.”

“This method, which uses only a small blood sample, may represent an option for generating iPSCs that maintains their genomic integrity,” said Anthony Atala, MD, Editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “The fact that these cells were differentiated into mature blood cells suggests their use in blood diseases.”

Overexpression of a Potassium Channel in Heart Muscle Cells Made From Embryonic Stem Cells Decreases Their Arrhythmia Risk


Embryonic stem cells have the capacity to differentiate into every cell in the adult body. One cell type into which embryonic stem cells (ESCs) can be differentiated rather efficiently is cardiomyocytes, which is a fancy term for heart muscle cells. The protocol for making heart muscle cells from ESCs is well worked out, and the conversion is rather efficient and the purification schemes that have been developed are also rather effective (for example, see Cao N, et al., Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013 Sep;23(9):1119-32. doi: 10.1038/cr.2013.102 and Mummery CL et al., Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012 Jul 20;111(3):344-58).

Using these cells in a clinical setting has two large challenges. The first is that embryonic stem cell derivatives are rejected by the immune system of the recipient, thus setting up the patient for a graft versus host response to the implanted tissue, thus making the patient even sicker than when they started. The second problem is that heart muscle cells made from ESCs are immature and cause the heart to beat abnormally fast thus causing “tachyarrythmias” and died within the first two weeks after the transplant (see Liao SY, et al., Heart Rhythm 2010 7:1852-1859).

Both of these problems are large problems, but the laboratory of Ronald Li at the University of Hong Kong at used a genetic engineering trick to make heart muscle cells from mouse embryonic stem cells to seemingly fix this problem.

Li and his colleagues engineered mouse ESCs with a gene for a potassium rectifier channel that could be induced with drugs. Then they differentiated these genetically ESCs into heart muscle cells. This potassium rectifier channel (Kir2.1) is not present in immature heart muscle cells and putting it into these cells might cause them to beat at a slower rate.

These engineered ESC-derived heart muscle cells were tested for their electrophysiological properties first. Without the drug that induces KIR2.1, the heart muscle cells showed very abnormal electrical properties. However, once the drug was added, their electrical properties looked much more normal.

Then they induced heart attacks in laboratory animals and implanted their engineered ESC-derived heart muscle cells 1 hour after the heart attacks were induced. Animals not given the drug to induce the expression of Kir2.1 faired very poorly and had episodes of tachyarrythmia (really fast heart beat) and over half of them died by 5 weeks after the implantation. Essentially the implanted animals did worse than those animals that had had a heart attack that were not treated. However, those animals that were given the drug that induces the expression of Kir2.1 in heart muscle cells did much better. The survival rate of these animals was higher than the untreated animals after about 7 weeks after the procedure. Survival rates increased by only a little, but the increase was significant. Also, the animals that died did not die of tachyarrythmias. In fact the rate of tachyarrythmias in the animals given the inducing drug (which was doxycycline by the way) had significantly lower levels of tachyarrythmia than the other two groups.

Other heart functions were also significantly affected. The ejection fraction in the animals that ha received the Kir2.1-expression heart muscle cells was 10-20% higher than the control animals. Also the density of blood vessels was substantially higher in both sets of animals treated with ESC-derived heart muscle cells. The echocardiogram of the hearts implanted with the Kir2.1-expressing heart muscle cells was altogether more normal than that of the others.

This paper is a significant contribution to the use of ESC-derived cells to treat heart patients. The induction of heart arrhythmias by ESC-derived heart muscle cells is a documented risk of their use. Li and his colleagues have effectively eliminated that risk in this paper by forcing the expression of a potassium rectifier channel in the ESC-derived heart muscle cells. Also, because these cells were completely differentiated and did not have any interloping pluripotent cells in their culture, tumor formation was not observed.

There are a few caveats I would like to point out. First of all, the increase in survival rate above the control is not that impressive. The improvement in heart function parameters is certainly encouraging, but because the survival rates are not that higher than the control mice that received no treatment, it appears that these benefits were only conferred to those mice who survived in the first place.

Secondly, even though the heart attacks were induced in the ventricles of the heart, Li and his colleagues injected a mixture of heart muscle cells that included atrial, ventricular, nodal and heart fibroblasts. This provides an opportunity for beat mismatches and a “substrate for ventricular tachycardia” as Li puts it. In the future, the transplantation of just ventricular heart muscle cells would be cleaner experiment. Since these mice were not observed long enough to observe potential arrythmias that might have arisen from the presence of a mixed population in the ventricle.

Finally, in adapting this to humans might be difficult, since the hearts of mice beat so much faster than those of humans. It is possible that even if human cardiomyocytes were engineered with Kir2.1-type channels, that arrythmias might still be a potential problem.

Despite all that, Li’s publication is a large step forward.

Treating Crohn’s Disease Fistulas with Fat Stem Cells


All of us have probably heard of Crohn’s disease or have probably known someone with Crohn’s disease. While the severity of this disease varies from patient to patient, some people with Crohn’s disease simply cannot get a break.

Crohn’s disease is one of a group of diseases known as IBDs or “Inflammatory Bowel Diseases.” IBDs include Crohn;s disease, which can affect either the small or large intestine and rarely the esophagus and mouth, ulcerative colitis, which is restricted to the large intestine, and other rarer types of IBDs known that include Collagenous colitis, Lymphocytic colitis, Ischaemic colitis, Diversion colitis, Behçet’s disease, and Indeterminate colitis.

Crohn’s disease (CD) involves the patient’s immune system attacking the tissues of the gastrointestinal tract, which leads to chronic inflammation within the bowel. While the exact mechanism by which this disease works is still not completely understood and robustly debated, Crohn’s disease was originally thought to be an autoimmune disease in which the immune system recognizes some kind of surface protein in the gastrointestinal tract as foreign and then attacks it. However, genetic studies of CD, linked with clinical and immunological studies have shown that this is not the case. Instead, CD seems to be due to a poor innate immunity so that the bowel has an accumulation of intestinal contents that breach the lining of the gastrointestinal tract, resulting in chronic inflammation. A seminal paper by Daniel Marks and others in the Lancet in 2006 provided hard evidence that this is the case. When Marks and others tested the white blood cells from CD patients and their ability to react to foreign invaders, those cells were sluggish and relatively ineffective. Therefore, Crohn’s seems to be an overactivity of the acquired immunity to make up for poor innate immunity.

Given all that, one of the biggest, most painful consequences of CD are anal fistulas. If those sound painful it’s because they are. A fistula is a connection between to linings in your body that should not normally be connected. In CD patients, the anus and the attached rectum get kicked about by excessive inflammation and tears occur. These tears heal, but the healing can cause connections between linings that previously did not exist. Therefore fecal material not comes out of the body in more than one place. Sounds disgusting? It gets worse. Those areas that leak feces are not subject to extensive pus formation and they must be fixed surgically. But how do you fix something that is constantly inflamed? It’s an ongoing problem in medicine.

Enter stem cells to the rescue, maybe. In Spain, a multicenter clinical study has just been published that shows that fat-derived mesenchymal stem cells might provide a better way to treat these fistulas in CD patients. Mesenchymal stem cells have the ability to suppress inflammation, and for that reason, they are excellent candidates to accelerate healing in cases such as these.

Galindo and his group took 24 CD patients who had at least one draining fistula (yes, some have more than one) and gave them 20 million fat-derived mesenchymal stem cells. These cells were extracted from someone else, which is an important fact, since liposuction procedures on these patients might have added to their already surfeit of inflammation.

For this treatment, the cells were administered directly on the lesion, which is almost certainly important. If the closing of the fistula was incomplete after 12 weeks, then the patients were given another dose of 40 million fat-derived mesenchymal stem cells right on the lesion. All these patients were followed until week 24 after the initial stem cell administration.

The results were very hopeful. There were no major adverse effects six months after the stem cell treatment. This is a result seen over and over with mesenchymal stem cells – they are pretty safe when administered properly. Secondly, full analysis the data showed that at week 24 69.2% of the patients showed a reduction in the number of draining fistulas. Even more remarkably, 56.3% of the patients achieved complete closure of the treated fistula. That is just over half. Also, 30% of the cases showed complete closure of all existing fistulas. These results are exciting when you consider the criteria they used for complete closure: absence of draining pus through its former opening. complete “re-epithelization” of the tissue, which means that the lining of the tissue is healed, looks normal and is properly attached to the proper neighbors, and magnetic resonance image (MRI) scans of the region must look normal. For these patients, the MRI “Score of Severity,” which is a measure of the structural abnormality of the anal region, showed statistically significant reductions at week 12 with a marked reduction at week 24. Folks that’s good news.

Galindo interprets his results cautiously and notes that this is a small study, which is true. He also states that the goal of this study was to ascertain the safety of this technique, and when it comes to safety, this technique is certainly safe. When it comes to efficacy, another larger study is required that specifically examined the efficacy of this technique. Galindo is, of course, quite correct, but this is certainly a very exciting result, and hopefully these cells will get further chances to “strut their therapeutic stuff.”

See de la Portilla F, et al Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial.  Int J Colorectal Dis. 2013 Mar;28(3):313-23. doi: 10.1007/s00384-012-1581-9. Epub 2012 Sep 29.

Culture Medium from Endothelial Progenitor Cells Heals Hearts


Endothelial Progenitor Cells or EPCs have the capacity to make new blood vessels but they also produce a cocktail of healing molecules. EPCs typically come from bone marrow, but they can also be isolated from circulating blood, and a few other sources.

The laboratory of Noel Caplice at the Center for Research in Vascular Biology in Dublin, Ireland, has grown EPCs in culture and shown that they make a variety of molecules useful to organ and tissue repair. For example, in 2008 Caplice published a paper in the journal Stem Cells and Development in workers in his lab showed that injection of EPCs into the hearts of pigs after a heart attack increased the mass of the heat muscle and that this increase in heart muscle was due to a molecule secreted by the EPCs called TGF-beta1 (see Doyle B, et al., Stem Cells Dev. 2008 Oct;17(5):941-51).

In other experiments, Caplice and his colleagues showed that the culture medium of EPCs grown in the laboratory contained a growth factor called “insulin-like growth factor-1” or IGF1. IGF1 is known to play an important role in the healing of the heart after a heart attack. Therefore, Caplice and his colleagues tried to determine if IGF1 was one of the main reasons EPCs heal the heart.

To test the efficacy of IGF1 from cultured EPCs, Caplice’s team grew EPCs in the laboratory and took the culture medium and tested the ability of this culture medium to stave off death in oxygen-starved heart muscle cells in culture. Sure enough, the EPC-conditioned culture medium prevented heart muscle cells from dying as a result of a lack of oxygen.

When they checked to see if IGF1 was present in the medium, it certainly was. IGF1 is known to induce the activity of a protein called “Akt” inside cells once they bind IGF1. The heart muscle cells clearly had activated their Akt proteins, thus strongly indicating the presence of IGF1 in the culture medium. Next they used an antibody that specifically binds to IGF1 and prevents it from binding to the surface of the heart muscle cells. When they added this antibody to the conditioned medium, it completely abrogated any effects of IGF1. This definitively demonstrates that IGF1 in the culture medium is responsible for its effects on heart muscle cells.

Will this conditioned medium work in a laboratory animal? The answer is yes. After inducing a heart attack, injection of the conditioned medium into the heart decreased the amount of cell death in the heart and increased the number of heart muscle cells in the infarct zone, and increased heart function when examined eight weeks after the heart attacks were induced. The density of blood vessels in the area of the infarct also increased as a result of injecting IGF1. All of these effects were abrogated by co-injection of the antibody that specifically binds IGF1.

From this study Caplice summarized that very small amounts of IGF1 (picogram quantities in fact) administered into the heart have potent acute and chronic beneficial effects when introduced into the heart after a heart attack.

These data are good enough grounds for proposing clinical studies. Hopefully we will see some in the near future.

Using Sleeping Stem Cells to Treat Aggressive Leukemias


British scientists have discovered that aggressive forms of leukemia (blood cancers) do not displace normal stem cells from the bone marrow, but instead, put them to sleep. If the normal stem cells are asleep, it implies that they can be awakened. This offers a new treatment strategy for acute myeloid leukemia or AML.

This work comes from researchers at Queen Mary, University of London with the support of Cancer Research UK’s London Research Institute.

In the United Kingdom, approximately 2,500 people are diagnosed with AML each year. The disease strikes young and old patients and the majority of patients die from AML.

In healthy patients, the bone marrow contains hematopoietic stem cells (HSCs) that divide to form either a common myeloid precursor (CMP) or a common lymphoid precursor (CLP) that differentiate into various kinds of white blood cells or red blood cells or lymphocytes. Individuals afflicted with AML, however, have bone marrow invaded by leukemic myeloid blood cells. Since red blood cells are derived from the myeloid lineage, AML causes red blood cell deficiencies (anemia), and the patient becomes tired, and is at risk for excessive bleeding. AML patients are also more vulnerable to infection those white blood cells that fight infections are not properly formed.

HSC differentiation2

David Taussig from the Barts Center Institute at Queen Mary, University of London said that the widely accepted explanation for these symptoms is that the cancerous stem cells displace or destroy the normal HSCs.

However, Taussig and his colleagues have found in bone marrow samples from mice and humans with AML contain plenty of normal HSCs. Thus, AML is not destroying or displacing the HSCs. Instead, the cancerous stem cells appear to be turning them off so that they cannot form HSCs. If Taussig and his coworkers and collaborators had determine how these leukemic myeloid blood cells are shutting off the normal HSCs, they might be able to design treatments to turn them back on.

Such a treatment strategy would increase the survival of AML patients. Only 40% of younger patients are cured of AML, and the cure rate for older patients in much lower. Current treatments that include chemotherapy and bone marrow transplants are not terribly successful with older patients.

Taussig’s group examined the levels of HSCs in the bone marrow of mice that had been transplanted with human leukemic myeloid cells from AML patients. They discovered that the numbers of HSCs stayed the same, but these same HSCs failed to transition through the developmental stages that result in the formation of new blood cells. When Taussig and his group examined bone marrow from 16 human AML patients, they discovered a very similar result.

Even though AML treatment has come a long way in the last ten years, there is still an urgent need for more effective treatments to improve long-term survival. This present study greatly advances our understanding of what’s going on in the bone marrow of AML patients. The future challenge is to turn this knowledge into treatments.

Under normal circumstances, stress on the body will boost HSC activity. For example, when the patient hemorrhages, the HSCs kick into action to produce more red blood cells that were lost during the bleed. However, the cancer cells in the bone marrow are somehow over-riding this compensatory mechanism and the next phase of this research will determine exactly how they do it.